GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2017-06-19
    Description: Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze-Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony position with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large L. pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general, no clear differences were observed in the abundance and in the size structure of the CWC populations between CCC and LDC, despite large differences in particulate matter between canyons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Seafloor Geomorphology as Benthic Habitat. , ed. by Harris, P. T. and Baker, E. K. Elsevier, Amsterdam, pp. 457-469. ISBN 978-0-12-385140-6
    Publication Date: 2017-06-20
    Description: The Cap de Creus continental shelf and Cap de Creus canyon are located in the southern most sector of the Gulf of Lions, in the northwestern Mediterranean. The Cap de Creus continental shelf contains sandy and muddy sediments and an abrupt morpho­ logy, with rocky outcrops, relict bioherms, erosive features, and planar bedforms. The Cap de Creus canyon breaches the shelf at a depth of 110 m and denotes a marked dif­ ference in the morphology between the northern and the southern flank, reflecting a different depositional regime. The most common substrates correspond to coarse and medium sands (28%) and silty sediments (40%). The most common megabenthic assemblages of the shelf correspond to the communities of "offshore detritic" (31.95%) and "coastal terrigenous muds" (36.99%), mostly dominated by sea pens, alcyonaceans, and ceriantharians. The northern flank of the Cap de Creus canyon is predominantly depositional, whereas the southern flank is erosional. Rocky outcrops provide the sub­ stratum for cold­water coral (CWC) communities' development, in which the white coral Madrepora oculata is the most abundant species.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-12
    Description: A rare red cyclone visible on Jupiter in 1994 and 1995 falls in a class of vortices that are intensely colored, yet low altitude, unlike the Great Red Spot (GRS). Dynamical modeling indicates that the presence of nearby anticyclones both aid in formation and lead to the destruction of the cyclone. A study of absolute spectral reflectance from Hubble Space Telescope imaging data shows that GRS is not typically the “reddest” region of the planet. Rather, transient red cyclones and the reddest parts of the North Equatorial Belt show less reflectance than the GRS at all wavelengths, with enhanced absorption at wavelengths near 500 nm. Temporal analysis shows that the darkest regions of the North Equatorial Belt and transient red cyclones are relatively constant in color from 1995 to 2014, while the spectral slope and absolute brightness of the GRS core varies over time. Laboratory data of colored materials that yield a good qualitative fit to the GRS spectrum do not match the spectra of other regions, and wavelengths from 400 to 700 nm may be most diagnostic of chromophore identification.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...