GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-28
    Description: This dataset contains raster grids in GeoTIFF format describing the habitat suitability for living Lophelia pertusa reefs in the Irish continental margin (extended continental shelf claim). The habitat suitability map is given in continuous and binary (based on the 10th percentile threshold) format. The geographic extent is 25°53.801'W - 6°42.401'W and 46°45.033'N - 57°27.033'N. The spatial resolution is 0.01°x0.01°. The map projection is WGS 1984.
    Keywords: CoralFISH; Ecosystem based management of corals, fish and fisheries in the deep waters of Europe and beyond
    Type: Dataset
    Format: unknown
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-24
    Description: This is the original abstract of the paper: Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs. In this data repository, we store the model output as 4 csv files: lon: longitude of each model box lat: latitude of each model box iscoral: a 0/1 matrix indicating whether corals are predicted to be present (1) or absent (0) as returned from the habitat suitability model of Rengstorf et al. (see paper for details) MeanCordepo: a matrix with mean OC deposition rates (mmol C m-2 d-1, averaged over the 3 months of model run, see paper) of the model run with corals present (i.e. the data underlying Fig. 5A).
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; cold-water corals; ecosystem engineering; ecosystem model; hydrodynamics; organic matter; organic matter deposition; Rockall Bank
    Type: Dataset
    Format: application/zip, 671.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-18
    Description: The present data set was used as a training set for a Habitat Suitability Model. It contains occurrence (presence-only) of living Lophelia pertusa reefs in the Irish continental margin, which were assembled from databases, cruise reports and publications. A total of 4423 records were inspected and quality assessed to ensure that they (1) represented confirmed living L. pertusa reefs (so excluding 2900 records of dead and isolated coral colony records); (2) were derived from sampling equipment that allows for accurate (〈200 m) geo-referencing (so excluding 620 records derived mainly from trawling and dredging activities); and (3) were not duplicated. A total of 245 occurrences were retained for the analysis. Coral observations are highly clustered in regions targeted by research expeditions, which might lead to falsely inflated model evaluation measures (Veloz, 2009). Therefore, we coarsened the distribution data by deleting all but one record within grid cells of 0.02° resolution (Davies & Guinotte 2011). The remaining 53 points were subject to a spatial cross-validation process: a random presence point was chosen, grouped with its 12 closest neighbour presence points based on Euclidean distance and withheld from model training. This process was repeated for all records, resulting in 53 replicates of spatially non-overlapping sets of test (n=13) and training (n=40) data. The final 53 occurrence records were used for model training.
    Keywords: CoralFISH; Device type; Ecosystem based management of corals, fish and fisheries in the deep waters of Europe and beyond; Habitat; Irish Sea; LATITUDE; LIT; Literary studies; LONGITUDE; Lophelia_habitat; ORDINAL NUMBER; Reference/source; Sample ID; Status; Type
    Type: Dataset
    Format: text/tab-separated-values, 291 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-25
    Description: Marine benthic ecosystems are difficult to monitor and assess, which is in contrast to modern ecosystem-based management requiring detailed information at all important ecological and anthropogenic impact levels. Ecosystem management needs to ensure a sustainable exploitation of marine resources as well as the protection of sensitive habitats, taking account of potential multiple-use conflicts and impacts over large spatial scales. The urgent need for large-scale spatial data on benthic species and communities resulted in an increasing application of distribution modelling (DM). The use of DM techniques enables to employ full spatial coverage data of environmental variables to predict benthic spatial distribution patterns. Especially, statistical DMs have opened new possibilities for ecosystem management applications, since they are straightforward and the outputs are easy to interpret and communicate. Mechanistic modelling techniques, targeting the fundamental niche of species, and Bayesian belief networks are the most promising to further improve DM performance in the marine realm. There are many actual and potential management applications ofDMsin the marine benthic environment, these are (i) earlywarning systems for species invasion and pest control, (ii) to assess distribution probabilities of species to be protected, (iii) uses in monitoring design and spatial management frameworks (e.g. MPA designations), and (iv) establishing long-term ecosystem management measures (accounting for future climate-driven changes in the ecosystem). It is important to acknowledge also the limitations associated with DM applications in a marine management context as well as considering new areas for futureDMdevelopments. The knowledge of explanatory variables, for example, setting the basis for DM, will continue to be further developed: this includes both the abiotic (natural and anthropogenic) and the more pressing biotic (e.g. species interactions) aspects of the ecosystem.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...