GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 105 (1990), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Hybrid plants with 21 pairs of wheat chromosomes and with a haploid rye genome were produced by backcrossing a primary octoploid triticale with its parental hexaploid wheat. Upon a second backcrossing or selfing, the rye chromosomes were eliminated rapidly. Added rye chromosomes, in varying numbers, affected the transmission rate of wheat chromosomes significantly. Loss of wheat chromosomes ranging from 0.06 to 0.35 per plant in different populations was observed. In these plants a remarkably high incidence of wheat/rye and rye/rye translocations occurred. Translocations were identified by using the C-banding technique. Among 837 analyzed plants 64 wheat/rye and 256 rye/rye translocations were identified. In different generations of backcrossing or selfing the frequency of wheat/rye translocations varied between 4.23 % and 14.67 %. All 14 rye chromosome arms were involved in translocations but with different frequencies. BC1F3 plants with homozygous wheat/rye translocations were isolated The results indicate that monosomic wheat/rye addition lines may be directly used as an effective means to transfer genetic material from rye into bread wheat.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 100 (1988), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: In diploid rye, two genes were detected which cause hybrid necrosis by complementary action if both are present in dominant condition. Moreover, these genes cause hybrid necrosis in triticale complementing with cither one of the two genes, Ne1 and Ne2 which are known to cause hybrid necrosis in wheat. It is suggested, that the two genes in rye are named Ner1 and Ner2 corresponding to the wheat gene with which they complement in triticale. The consequences of the presence of necrosis genes in rye populations for breeding of rye are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 105 (1990), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The successful transfer of mildew resistance, plant height suppression, leaf colour and several quantitative traits effecting yield from rye into wheat is demonstrated. Plants exhibiting these characters were derived from genotypes which contained a homozygous wheat genome (21”) and different number of additional rye chromosomes in the monosomic condition. Using the C-banding technique wheat/rye translocation could not be detected in these plants, indicating that the size of the transferred segment must have been below the resolution power of this technique. The results suggest that in wheat plants with additional rye chromosomes in monosomic condition small segments of rye chromosomes with valuable genes are being transferred into wheat by translocation, most probably, between homoeologous wheat and rye chromosomes. The technique described in this paper appears to be a simple way of using rye chromatin in wheat improvement.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 77 (1989), S. 742-748 
    ISSN: 1432-2242
    Keywords: Triticale ; Hybrid necrosis ; Gene complementation ; Polyploidy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The occurrence in triticale of four different genes causing hybrid necrosis is described: Ne1 and Ne2 in the B genome of wheat and Ner1 and Ner2 in the rye genome. Hybrid necrosis develops due to dominant complementary interaction of two genes. This interaction in triticale, however, may take place not only between genes belonging to the same genome but also between genes of different genomes. In triticale, these genes can cause hybrid necrosis in four different combinations. The inheritance of the phenomenon in triticale is, therefore, more complicated than it is in wheat or rye. To avoid hybrid necrosis in triticale, attention should be paid that no necrosis genes are introduced into the primary triticale stocks from the wheat and rye parents. The expression of necrosis genes is influenced by the level of ploidy. Any additional genome — A, B, D, or R — may exert a suppressing effect on the expression of necrosis genes. Therefore, when identifying genotypes of triticale with regard to their necrosis genes, the level of ploidy has to be accounted for. Moreover, the present results illustrate that gene expression in polyploids is not only determined by interactions with other single genes but that it may also be modified by the total genotype of the respective individual.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...