GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2024-04-20
    Description: All available Argo float data from 2002 to 2016 in the Weddell Sea region were used to fit a stream function of the horizontal circulation of the Weddell Gyre. Argo float trajectories where sequences of positions are available (i.e., under ice profiles have an interpolated position and are therefore excluded) were used to estimate absolute velocity at the parking depth, which is then objectively mapped and fitted with a stream function using a cost function. Within the cost function, boundary conditions are defined such that the flow at the boundary is parallel to the boundary itself. The cost function provides the best fit stream function representative of the entire gyre circulation. The resulting stream function represents horizontal circulation at the parking depth of the Argo floats (usually 800 m; those with a different parking depth were corrected accordingly). Objectively mapped density data from the Argo float profiles were then incorporated to provide geostrophic stream functions for 41 levels between 50 and 2000 dbar. These were then vertically integrated to ultimately provide a geostrophic stream function of the upper 50-2000 dbar of the Weddell Gyre, representative of its mean horizontal circulation. Units are in Sverdrups (Sv), where 1 Sv = 1x10^6 m^3/s, and is the standard unit for quantifying volume transports. Full details of the method for the original stream function data, and the subsequent improvements for the published dataset are available in the supplemental links.
    Keywords: Argo_float_Weddell_Gyre; Argo floats; Argo profiles; Argo trajectories; Geostrophic; HAFOS; Horizontal circulation; Hybrid Antarctic Float Observation System; ocean circulation; SO-CHIC; Southern Ocean Carbon and Heat Impact on Climate; Stream Function; TRR181; TRR181 Energy transfers in Atmosphere and Ocean; Weddell Gyre; Weddell Sea
    Type: Dataset
    Format: application/x-hdf, 92.2 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-18
    Description: The aim of the sub-project HAFOS-nutrients was to determine the nutrients phosphate, nitrate, silicate, nitrite and ammonium in water samples from the entire water column in order to obtain nutrient sections through the Weddell Sea: 954 water samples were taken, in total; 4770 data points for all the different nutrients were measured. The determination of nutrients and biogeochemical parameters is closely connected with physical and biological investigations. The development of phytoplankton blooms and particulate organic matter flux is especially dependent on the available nutrients. Nutrients are also well suited as tracers for the identification of water masses. This work was carried out to continue the investigation of the seasonal as well as the interannual variability of nutrients in the Antarctic Circumpolar Current (ACC) and the Weddell Gyre. In comparison to similar transects of former years, our work focused especially on the transect from Kapp Norvegia to Joinville Island (Hoppema et al., 2015).
    Keywords: Ammonium; Bottle number; Campaign; Cast number; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; ELEVATION; Event label; HAFOS; LATITUDE; LONGITUDE; Nitrate; Nitrite; Phosphate; Polarstern; PS129; PS129_100-3; PS129_102-1; PS129_103-1; PS129_104-1; PS129_105-1; PS129_106-1; PS129_107-1; PS129_109-3; PS129_110-1; PS129_111-1; PS129_112-1; PS129_114-2; PS129_116-1; PS129_117-1; PS129_119-1; PS129_120-1; PS129_121-1; PS129_122-1; PS129_123-1; PS129_18-7; PS129_23-1; PS129_25-8; PS129_27-2; PS129_30-1; PS129_40-2; PS129_41-2; PS129_42-1; PS129_47-1; PS129_49-1; PS129_53-3; PS129_54-3; PS129_58-2; PS129_59-1; PS129_60-1; PS129_62-4; PS129_64-2; PS129_65-1; PS129_68-1; PS129_70-1; PS129_71-2; PS129_72-1; PS129_72-3; PS129_74-4; PS129_80-2; PS129_83-2; PS129_86-1; PS129_87-1; PS129_88-1; PS129_96-1; PS129_97-1; PS129_99-1; Segmented Flow Analyzer, SEAL Analytical, SEAL AA500; Calculated according to Grasshoff et al. (1983); Silicate; South Atlantic Ocean; Station label; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 8235 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Reeve, Krissy A; Boebel, Olaf; Kanzow, Torsten; Strass, Volker H; Rohardt, Gerd; Fahrbach, Eberhard (2016): A gridded data set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping of Argo float measurements. Earth System Science Data, 8(1), 15-40, https://doi.org/10.5194/essd-8-15-2016
    Publication Date: 2024-04-20
    Description: The Weddell Gyre plays a crucial role in the modification of climate by advecting heat poleward to the Antarctic ice shelves and by regulating the density of water masses that feed the lowest limb of the global ocean overturning circulation. However, our understanding of Weddell Gyre water mass properties is limited to regions of data availability, primarily along the Prime Meridian. The aim of this paper is to provide a data set of the upper water column properties of the entire Weddell Gyre. Objective mapping was applied to Argo float data in order to produce spatially gridded, time-composite maps of temperature and salinity for fixed pressure levels ranging from 50 to 2000 dbar, as well as temperature, salinity and pressure at the level of the sub-surface temperature maximum. While the data are currently too limited to incorporate time into the gridded structure, the data are extensive enough to produce maps of the entire region across three time-composite periods (2001–2005, 2006–2009 and 2010–2013), which can be used to determine how representative conclusions drawn from data collected along general RV transect lines are on a gyre scale perspective. The work presented here represents the technical prerequisite for addressing climatological research questions in forthcoming studies.
    Keywords: Weddell_Gyre; Weddell Sea
    Type: Dataset
    Format: application/zip, 6.7 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along-track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross-slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average urn:x-wiley:21699275:media:jgrc24332:jgrc24332-math-0006(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near-bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer-warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice-free Arctic Ocean in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 175, pp. 263-283, ISSN: 0079-6611
    Publication Date: 2019-11-08
    Description: Argo floats provide both hydrographic and trajectory data, affording the opportunity to investigate surface to mid-depth ocean dynamics. Here, Argo float data are used to determine the absolute geostrophic velocity field of the upper 50–2000 m of the Weddell Gyre, from which the overall circulation pattern is investigated. The Weddell Gyre plays a pivotal role in the modification of climate by advecting heat towards the Antarctic ice shelves and by modifying the water masses that feed into the lowest limb of the global ocean overturning circulation. Warm Deep Water, the source water mass that delivers heat to the Weddell Gyre, is conveniently located within the upper 2000 m domain covered by the floats; we investigate its volume transport as it circulates the gyre. Full depth volume transports are estimated by applying a quadratic function to extrapolate the relative dynamic height field component to the full ocean depth, using CTD profiles from ship-based surveys to determine an extrapolation error. Major new insights are provided by this study. There is an established double-gyre structure to the circulation, with a strong eastern cell and a weaker western cell. Regional variation of the baroclinic component of the flow field is revealed, indicating a northeast-to-southwest reduction in the baroclinic flow, along with a strong meridional gradient of baroclinic flow along the northern limb of the gyre, especially east of ∼25°W. The zonal mean gyre strength away from the shelf edge is 32 ± 5 Sv (1 Sv = 1 × 106 m3 s−1), of which 13 ± 3 Sv are associated with the advection of Warm Deep Water. There is a considerable amount of recirculation within the gyre interior, where water does not traverse the full zonal extent of the gyre. The recirculation is stronger in the eastern cell of the observed double-gyre structure. The interior circulation cells partly explain the large variations in previous gyre strength estimates. We provide an extensive review of previous estimates in context of the new results obtained.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3online Koordinationsworkshop 2020 SPP 1158 "Antarctic Research with Comparative Investigations in Arctic Ice Areas", 2020-09-2020-09
    Publication Date: 2020-09-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-17
    Description: The Weddell Gyre plays a crucial role in the modification of climate by advecting heat poleward to the Antarctic ice shelves and by regulating the density of water masses that feed the lowest limb of the global ocean overturning circulation. However, our understanding of Weddell Gyre water mass properties is limited to regions of data availability, primarily along the Prime Meridian. The aim of this paper is to provide a data set of the upper water column properties of the entire Weddell Gyre. Objective mapping was applied to Argo float data in order to produce spatially gridded, time-composite maps of temperature and salinity for fixed pressure levels ranging from 50 to 2000 dbar, as well as temperature, salinity and pressure at the level of the sub-surface temperature maximum. While the data are currently too limited to incorporate time into the gridded structure, the data are extensive enough to produce maps of the entire region across three time-composite periods (2001–2005, 2006–2009 and 2010–2013), which can be used to determine how representative conclusions drawn from data collected along general RV transect lines are on a gyre scale perspective. The work presented here represents the technical prerequisite for addressing climatological research questions in forthcoming studies. The data sets are available in netCDF format at doi:10.1594/PANGAEA.842876.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3SCAR Open Science Conference, Kuala Lumpur, Malaysia, 2016-08-20-2016-08-30
    Publication Date: 2016-09-07
    Description: The Antarctic Bottom Water (AABW), which ventilates most of the deepest basins of the world ocean, has shown widespread warming in recent decades that contributes inter alia to the global thermosteric sea level rise. More than half of the AABW is supplied by outflow from the Weddell Sea where it attains its characteristics, in particular its high density, by heat loss of its source water masses to the atmosphere and to the fringing ice shelves and by influx of locally formed water masses such as the high-salinity shelf water shaped by brine release from freezing sea ice. Dense shelf waters cascade down the continental slope along the southern and western rim of the Weddell Sea, mix with the modified source waters and thus replenish the Weddell Sea Bottom (WSBW) and Deep Water (WSDW), precursor of the AABW. The major source water mass, hence conduit of heat for the interior Weddell Sea, is the Circumpolar Deep Water (CDW) advected from the Antarctic Circumpolar Current (ACC) with the southward oriented eastern limb of the Weddell Gyre. During its advection, the CDW is sucked upward by divergence in the large-scale mean wind-field to about 200 m in the central Weddell Sea, where it is termed Warm Deep Water (WDW). Progress in the understanding of this twisted transformation of water masses is obtained from a combination of three different observational approaches. First, a gridded data set of upper-ocean hydrographic properties in the Weddell Gyre derived by objective mapping of under-ice Argo float profiles; this data set reveals for instance the WDW inflow, its transport with the Weddell Gyre, and the erosion of its core thermohaline properties during circulation. Second, multi-annual time series obtained from repeat deep CTD stations, which demonstrate a significant, approximate linear warming trend in the Weddell Sea deep water masses below 700 m depth of roughly 2 mK per annum during the past 25 years. Third, long-term mooring records of velocity and temperature in the Weddell outflow regime on the northwestern continental slope, which reveal sizable intra-seasonal and seasonal fluctuations in the WSBW plume, and a hardly significant multi-annual trend which indicates rather a cooling than a warming and therefore differs from the significant warming seen in the deep waters of the Weddell interior.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-07-21
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along‐track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross‐slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average O(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near‐bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer‐warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice‐free Arctic Ocean in summer.
    Description: Plain Language Summary: Warm water from the Atlantic Ocean enters the Arctic Ocean through the Barents Sea and the Fram Strait, between Greenland and Norway, and directly influences the formation of sea ice: When the Atlantic Water (AW) is located close to the ocean's surface, as is the case shortly after its inflow in the Barents Sea, sea ice melts and new sea ice formation is hindered. This is why the Barents Sea is often ice free, even in winter. Further along the pathway, in the Laptev and East Siberian Sea study region, the AW gradually cools and dives down to deeper layers. In order to quantify the cooling and to understand how and where it happens, we measured vertical profiles of temperature and heat fluxes along a 2,500 km long part of the AW pathway. Based on these measurements, we found that the heat loss mainly occurs by mixing of warm AW with ambient cold water above the continental slope, in particular in the highly energetic region near the sea floor.
    Description: Key Points: The Atlantic Water (AW) transported in the Arctic Boundary Current loses O(108)  J m−2 per 100 km during its translation along the Siberian shelves Heat fluxes are larger than previously reported values, but too small to account for this heat loss, indicating the importance of boundary mixing The heat input from the underlying AW layer to the cold halocline is of similar magnitude to the heat input from the warm surface layer above
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: NSF | GEO | Division of Ocean Sciences http://dx.doi.org/10.13039/100000141
    Keywords: 551.46 ; Arctic Boundary Current ; Arctic Ocean ; heat flux ; Laptev Sea ; mixing ; turbulence
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...