GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1420-908X
    Keywords: Silica ; Lung ; Inflammation ; Dexamethasone ; Peroxynitrite ; Chemiluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhalation of silica has been shown to produce a dramatic inflammatory and toxic response within the lungs of humans and laboratory animals. Currently, no effective treatment exists for workers who may have been exposed to the inhalation of silica. The objective of this study was to develop an animal model in which we could evaluate the effect that anti-inflammatory steroids have on the acute silica-induced pulmonary inflammatory response. Male Fischer 344 rats were pretreated with either dexamethasone (2 mg/kg) or saline vehicle (i.p.) on days 1, 3, and 5. On day 6, the animals from the two groups were then intratracheally instilled with either silica (20 mg/0.5 ml saline vehicle) or saline vehicle (0.5 ml). Twenty-four hours after the instillations in the non-steroid group, significant increases occurred in total protein, total number of cells, neutrophils, and lymphocytes recovered from the lungs of animals treated with silica compared to saline controls. Silica also caused dramatic increases in the luminol-dependent chemiluminescence (LDCL) of lung tissue and bronchoalveolar lavage (BAL) cells. The LDCL reaction was markedly decreased by either superoxide dismutase (SOD) orN-nitro-l-arginine methyl ester hydrochloride (l-NAME). SOD is involved in the enzymatic breakdown of superoxide anion, whilel-NAME, a nitric oxide (NO) synthase inhibitor, prevents the formation of NO. When the superoxide anion and NO react, they form the highly oxidizing substance peroxynitrite. This study then implicates peroxynitrite as an agent which may be involved in the silica-induced oxidant lung injury. When the animals were pretreated with the steroid dexamethasone, there was a complete protection against the biochemical, cellular, and chemiluminescent indices of damage caused by silica. The mechanism in which the steroid protects the lung from damage may be due to the ability of dexamethasone to block the induction of NO synthase. With further study in animals, the anti-inflammatory steroids may be useful in the treatment of silicainduced lung injury.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2576
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Chemical alteration of the glucocorticoid, methylprednisolone, has led to the introduction of a new class of compounds called the 21-aminosteroids (21-ASs). The purpose of this study was to investigate the effect of the 21-AS, U74389G, on silica-induced acute lung injury. Male Fischer 344 rats were treated intraperitoneally with saline or U74389G in a total dose of 15 mg/kg divided into three injections of 5 mg/kg separated by 4 h. Following the first treatment, animals from the two groups were intratracheally instilled with silica (10 mg/100 g body wt in 0.5 ml of saline) or saline vehicle (0.5 ml). Twenty-four hours after the instillations, bronchoalveolar lavage (BAL) was performed. In the animals not receiving U74389G, marked increases in total protein, (β-glucuronidase, and lactate dehydrogenase (LDH) activities and number of neutrophils (PMNs) were demonstrated in the BAL fluid of the silica-treated animals compared to their controls. Silica also caused dramatic increases in the luminol-dependent chemiluminescence (CL) of lung tissue and BAL cells. The CL reaction was decreased by superoxide dismutase (SOD) andN-nitro-l-arginine methyl ester hydrochloride (L-NAME), a nitric oxide (NO) synthase inhibitor. In animals treated with U74389G, there was attenuation of the silica-induced increases in biochemical, cellular, and chemiluminescent indices of damage. This study demonstrates that U74389G significantly reduces acute lung injury caused by the intratracheal instillation of silica, and this drug may be of potential value for treatment of lung diseases in which damage caused by reactive oxygen species has been implicated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Inflammation 19 (1995), S. 55-65 
    ISSN: 1573-2576
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The use of the antiarrythmic drug amiodarone (AD) has been limited by the propensity of the drug to cause severe lung damage. AD has been shown to produce a transient pulmonary fibrosis in hamsters after intratracheal instillation. The goal of this study was to characterize the early inflammatory events associated with the administration of AD. Male Syrian hamsters that were instilled intratracheally with AD or saline vehicle underwent bronchoalveolar lavage (BAL). Total cells, macrophages, and eosinophils obtained by BAL were elevated by AD treatment at day 3. At both days 1 and 3 after instillation, AD-treated animals had significant elevations in neutrophil number. BAL fluid albumin was significantly elevated at day 1 in treated animals. Chemiluminescence (CL) performed on cells obtained by BAL showed an increase in CL of AD-treated samples compared to controls in phorbol myristate acetate (PMA) stimulated CL. PMA-induced increases in responsiveness were diminished by superoxide dismutase and catalase. These results indicate that oxidants such as superoxide and hydrogen peroxide may be involved in this inflammatory process. The results of this study show that intratracheal instillation of AD results in an inflammatory response that can be assessed by cellular, biochemical, and functional means.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...