GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Bioconjugate chemistry 6 (1995), S. 411-417 
    ISSN: 1520-4812
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Material surfaces that can mediate cellular interactions by the coupling of specific cell membrane receptors may allow for the design of a biomaterial that can control cell attachment, differentiation, and tissue organization. Cell adhesion proteins have been shown to contain minimum oligopeptide sequences that are recognized by cell surface receptors and can be covalently immobilized on material surfaces. In this study, cell attachment to fluorinated ethylene propylene (FEP) films functionalized with the laminin-derived oligopeptides, YIGSR and a 19-mer IKVAV-containing sequence, was assessed using NG108-15 neuroblastoma and PC12 cells. A radiofrequency glow discharge (RFGD) process that replaces the FEP surface fluorine atoms with reactive hydroxyl functionalities was used to activate the film surfaces. The oligopeptides were then covalently coupled to the surface by their C-terminus using a standard nucleophilic substitution reaction. The covalent attachment of the oligopeptides to the FEP surface was verified using electron spectroscopy for chemical analysis (ESCA). Receptor-mediated NG108-15 cell attachment on the YIGSR-modified films was determined using competitive binding assays. Average cell attachment on the oligopeptide immobilized films in medium containing soluble CDPGYIGSR was reduced by approximately a factor of 2, compared to cell attachment in serum-free medium alone. No significant decrease in cell attachment was noted in medium containing the mock oligopeptide sequence CDPGYIGSK. FEP films immobilized with the 19-mer IKVAV sequence demonstrated a higher percentage of receptor mediated cell attachment on the film surfaces. A sixfold decrease in PC12 cell attachment occurred on the oligopeptide immobilized films in a competitive binding assay medium containing the soluble IKVAV oligopeptide compared to cell attachment in serum-free medium alone. These results demonstrate that laminin oligopeptides can be covalently immobilized on an FEP material surface and analytically verified, and can mediate the receptor specific coupling of neuronal cells onto its surface. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The patterned covalent surface addition of a monoamine to fluorinated ethylene propylene films (FEP) controls both cellular attachment and differentiation in defined media conditions. A radio frequency glow discharge (RFGD) process was used to replace FEP surface fluorine atoms with hydroxyl groups. The primary amine was then covalently attached by polymerizing aminopropyl-triethoxysilane (APTES) via the hydroxyl functionalities. The selective attachment of cells to the APTES regions was determined to be dependent upon the initial adsorption of albumin to the patterned FEP membrane. Albumin was determined to enhance cellular attachment to the APTES regions and prevent attachment to the unmodified FEP areas for both an NB2a neuroblastoma cell line and primary rat endothelial cells. If albumin were not preadsorbed onto the membrane, selective attachment to the modified regions would not occur. Radiolabeling albumin with 125I demonstrated the preference of albumin for adsorption onto the monoamine surface where the cells preferentially attached. Both hydrophobic and ionic forces contributed to the adsorption process. Although selective cellular attachment to the patterned APTES regions could be achieved by albumin preadsorption to the surface, the neuroblastoma cells did not significantly differentiate unless additional serum components were supplemented to the media. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 663-671 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The ability to organize cells in three dimensions (3D) is an important component of tissue engineering. This study sought to develop an extracellular matrix (ECM) equivalent with a physicochemical structure capable of supporting neurite extension from primary neural cells in 3D. Rat embryonic day 14 striatal cells and chick embryonic day 9 dorsal root ganglia extended neurites in 3D in agarose hydrogels in a gel concentration-dependent manner. Primary neural cells did not extend neurites above a threshold agarose gel concentration of 1.25% wt/vol. Gel characterization by hydraulic permeability studies revealed that the average pore radius of a 1.25% agarose gel was 150 mm. Hydraulic permeability studies for calculating average gel pore radius and gel morphology studies by environmental and scanning electron micrography showed that the average agarose gel pore size decreased exponentially as the gel concentration increased. It is hypothesized that the average gel porosity plays an important role in determining the ability of agarose gels to support neurite extension. Lamination of alternating nonpermissive, permissive, and nonpermissive gel layers facilitated the creation of 3D neural tracts in vitro. This ability of agarose hydrogels to organize, support, and direct neurite extension from neural cells may be useful for applications such as 3D neural cell culture and nerve regeneration. Agarose hydrogel substrates also offer the possibility of manipulating cells in 3D, and may be used as 3D templates for tissue engineering efforts in vitro and in vivo.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 1 (1983), S. 412-420 
    ISSN: 0736-0266
    Keywords: Polymethylmethacrylate ; Pressurized bone cement ; Cement penetration ; Fixation strength ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The effect of the quality of the bone and of the cement pressurization magnitude and duration on the fixation achieved with polymethylmethacrylate (PMMA) bone cement is studied in vitro. Seventy-one cementbone interface specimens, prepared under various conditions of pressurization of low-viscosity bone cement, are tested in tension. The load at failure and the maximum cement penetration are measured to assess the fixation achieved, and the quality of the bone is assessed by determining the compressive strength of each of the bone specimens. Statistical analysis of the data indicates that the pressure magnitude is the most influential of the factors considered in the cement penetration behavior and in the development of failure load capacity. The duration of the pressure does not appear to be a significant factor. The cement penetration is a decreasing function of the bone strength, reflecting a decrease in the porosity and an increase in the area fraction. Although not directly measured in these tests, these latter bone properties are indirectly measured by the bone compressive strength. The effect of increasing bone strength on the failure load is nonlinear. The development of adequate failure load capacity is the result of a balance between the cement penetration allowed by the porosity of the bone and the inherent strength of the cancellous bone itself. Weak bone, although adequately penetrated by cement, cannot provide strong fixation. Stronger, denser bone limits cement penetration, but pressurization enhances development of failure load capacity through more complete infusion and interlocking of the cement in the available pore space. The strength of the fixation achievable for any bone is limited by the intrinsic strength of the bone. An optimal depth of cement penetration of 4 mm and an optimal bone area fraction of 0.20 are suggested for the most effective fixation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawco, N. J., Barone, B., Church, M. J., Babcock-Adams, L., Repeta, D. J., Wear, E. K., Foreman, R. K., Bjorkman, K. M., Bent, S., Van Mooy, B. A. S., Sheyn, U., DeLong, E. F., Acker, M., Kelly, R. L., Nelson, A., Ranieri, J., Clemente, T. M., Karl, D. M., & John, S. G. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochemical Cycles, 35(12), (2021): e2021GB007112, https://doi.org/10.1029/2021GB007112.
    Description: In stratified oligotrophic waters, phytoplankton communities forming the deep chlorophyll maximum (DCM) are isolated from atmospheric iron sources above and remineralized iron sources below. Reduced supply leads to a minimum in dissolved iron (dFe) near 100 m, but it is unclear if iron limits growth at the DCM. Here, we propose that natural iron addition events occur regularly with the passage of mesoscale eddies, which alter the supply of dFe and other nutrients relative to the availability of light, and can be used to test for iron limitation at the DCM. This framework is applied to two eddies sampled in the North Pacific Subtropical Gyre. Observations in an anticyclonic eddy center indicated downwelling of iron-rich surface waters, leading to increased dFe at the DCM but no increase in productivity. In contrast, uplift of isopycnals within a cyclonic eddy center increased supply of both nitrate and dFe to the DCM, and led to dominance of picoeukaryotic phytoplankton. Iron addition experiments did not increase productivity in either eddy, but significant enhancement of leucine incorporation in the light was observed in the cyclonic eddy, a potential indicator of iron stress among Prochlorococcus. Rapid cycling of siderophores and low dFe:nitrate uptake ratios also indicate that a portion of the microbial community was stressed by low iron. However, near-complete nitrate drawdown in this eddy, which represents an extreme case in nutrient supply compared to nearby Hawaii Ocean Time-series observations, suggests that recycling of dFe in oligotrophic ecosystems is sufficient to avoid iron limitation in the DCM under typical conditions.
    Description: The expedition and analyses were supported by the Simons Foundation SCOPE Grant 329108 to S. G. John, M. J. Church, D. J. Repeta, B. Van Mooy, E. F. DeLong, and D. M. Karl. N. J. Hawco was supported by a Simons Foundation Marine Microbial Ecology and Evolution postdoctoral fellowship (602538) and Simons Foundation grant 823167.
    Keywords: Chlorophyll ; Photosynthesis ; Iron limitation ; Oligotrophic ; Prochlorococcus ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...