GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Bristol :Institute of Physics Publishing,
    Keywords: Electronic books.
    Description / Table of Contents: This book describes the existing nonlinear pulse compression techniques to achieve femtosecond/attosecond pulses. It includes the topics such as importance of ultrashort pulses, photonic crystal fiber, pulse propagation in the fiber, numerical tools for the analysis of pulse propagation and compression, ultrashort pulse generation techniques, as well as an analysis of each compression scheme along with the quality analysis of the compressed pulse.
    Type of Medium: Online Resource
    Pages: 1 online resource (187 pages)
    Edition: 1st ed.
    ISBN: 9780750343923
    Series Statement: IOP Series in Advances in Optics, Photonics and Optoelectronics Series
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Author biographies -- R Vasantha Jayakantha Raja -- A Esther Lidiya -- Chapter 1 Introduction -- 1.1 Ultrashort pulses -- 1.2 Characteristics of optical pulses -- 1.3 Generation of broadband spectra -- 1.4 Time-bandwidth product -- 1.5 Applications of ultrashort pulses -- 1.5.1 Frequency metrology -- 1.5.2 Optical coherence tomography -- 1.5.3 Wavelength-division multiplexing -- 1.5.4 Materials processing -- 1.5.5 Medicine -- 1.5.6 Fusion energy -- 1.5.7 High-harmonic generation -- 1.6 Ultrashort-pulse-generation techniques -- 1.6.1 Mode-locking techniques -- 1.7 Pulse compression -- 1.7.1 Linear pulse compression -- 1.7.2 Nonlinear pulse compression -- 1.8 Experiments with pulse-compression techniques -- 1.9 Organization of this book -- References -- Chapter 2 Photonic crystal fiber -- 2.1 Optical fiber -- 2.2 Guiding mechanism of optical fiber -- 2.3 Optical fiber construction -- 2.4 Modes in optical fiber -- 2.5 Normalized frequency (V number) of a core -- 2.6 Transmission window -- 2.7 Pulse compression in optical fiber -- 2.8 Photonic crystal fiber -- 2.8.1 Types of photonic crystal fiber -- (i) Photonic bandgap fiber -- (ii) Index-guiding PCF -- 2.9 Fabrication of photonic crystal fiber -- 2.10 Material selection for PCF modeling -- 2.11 Advantages -- 2.12 Pulse compression in PCF -- References -- Chapter 3 Theory and modeling of photonic crystal fiber -- 3.1 Numerical methods -- 3.2 The fully vectorial effective index method -- 3.3 Group velocity dispersion (GVD) -- 3.4 Mode parameters of PCF -- 3.5 Linear properties of photonic crystal fiber -- 3.6 Nonlinear properties of photonic crystal fiber -- 3.7 Finite-element method -- 3.7.1 Perfectly matched layer -- 3.7.2 Photonic crystal fiber parameters -- References -- Chapter 4 Soliton propagation -- 4.1 Soliton. , 4.2 Nonlinear propagation in optical fiber -- 4.2.1 Polarization response -- 4.2.2 Nonlinear Schrödinger equation -- 4.2.3 Deriving the nonlinear Schrödinger equation -- 4.2.4 Higher-order nonlinear effects -- 4.3 Split-step Fourier method -- 4.4 Nonlinear propagation in optical fiber -- 4.4.1 Linear and nonlinear effects of fiber -- (i) Dispersion -- (ii) Self-phase modulation -- (iii) Raman effect -- 4.4.2 Soliton generation -- 4.4.3 Modulational instability -- 4.5 Importance of optical solitons -- 4.6 Why solitons in photonic crystal fiber? -- References -- Chapter 5 Conventional compression schemes -- 5.1 Mechanism of pulse compression -- 5.2 Soliton compression -- 5.2.1 Second-order soliton compression -- 5.2.2 Third-order soliton compression -- 5.3 Quality analysis -- 5.3.1 Compression factor -- 5.3.2 Pedestal energy -- 5.3.3 Quality factor -- 5.4 Adiabatic compression -- 5.5 Pulse-parameter equation -- 5.6 Projection operator method -- References -- Chapter 6 Self-similar compression -- 6.1 Review of pulse compression -- 6.2 Pulse compression through self-similar analysis -- 6.2.1 Why use self-similar scale analysis in pulse compression? -- 6.2.2 Self-similar analysis -- 6.2.3 Designing PCF using self-similar analysis -- 6.2.4 Pedestal-free pulse compression -- References -- Chapter 7 Pulse compression in nonlinear optical loop mirrors -- 7.1 Introduction -- 7.2 Nonlinear optical loop mirrors -- 7.3 Numerical model of an NOLM -- 7.4 Applications of NOLMs -- 7.4.1 Amplitude equalizers -- 7.4.2 Saturable absorbers -- 7.5 Soliton propagation in NOLMs -- 7.6 Soliton pulse compression in NOLMs -- 7.6.1 Demonstration of the technique -- 7.6.2 Effects of initial soliton order -- 7.6.3 Effect of initial frequency chirp -- 7.6.4 Influence of higher-order effects -- References -- Chapter 8 Cascaded compression -- 8.1 Cascaded compression. , 8.2 Effect of temperature on chloroform-infiltrated PCF -- 8.3 Theoretical modeling of cascaded PCF -- 8.4 Compression through a cascaded PCF -- 8.5 Quality analysis -- References -- Chapter 9 Supercontinuum compression -- 9.1 Supercontinuum generation -- 9.2 Physical mechanisms -- 9.2.1 Mechanism of supercontinuum generation -- (i) Soliton fission -- (ii) Modulational-instability-induced supercontinuum generation -- 9.3 Pulse compression through SCG -- 9.4 Tunable pulse compression -- 9.5 Theoretical model -- 9.5.1 Fiber design -- 9.5.2 Temperature-dependent pulse compression -- References -- Chapter -- Determination of FWHM -- Chapter -- Higher-order soliton compression -- Chapter -- Adiabatic compression.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Fluid mechanics. ; Viscoplasticity. ; Mechanics, Applied. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (405 pages)
    Edition: 2nd ed.
    ISBN: 9783030985035
    DDC: 532
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- 1 The Basic Features of Viscoplasticity -- 1.1 Bingham Fluid at Rest in a Channel -- 1.2 Sign of the Shear Stress -- 1.3 Critical Pressure Drop and the Constitutive Relation -- 1.4 The Solution -- 1.5 Flow Rate -- 1.6 Inherent Nonlinearity -- 1.7 Non-dimensionalisation -- 1.8 The Buckingham Equation -- 1.9 Free Boundary Problems -- 1.10 The Minimiser and the Variational Inequality -- 1.11 Effects of Wall Slip -- 1.12 Experimental Evidence and Modelling -- References -- 2 Kinematics of Fluid Flow -- 2.1 Kinematical Preliminaries -- 2.2 Relation Between the Velocity and Deformation Gradients -- 2.3 Rigid Motion -- 2.4 Polar Decomposition, Spin and Stretching -- 2.5 Steady Velocity Fields and Their Rivlin-Ericksen Tensors -- 2.6 Appendix A: Divergence, Curl, Rivlin-Ericksen Tensor and Spin Tensor -- References -- 3 Fundamental Equations: Continuum Mechanics and Lattice Boltzmann Models -- 3.1 Introduction -- 3.2 Conservation of Mass -- 3.3 Cauchy's First Law of Motion -- 3.4 Cauchy's Second Law of Motion -- 3.5 Conservation of Energy -- 3.6 Control Volume and Control Surface -- 3.7 Particle Based Models -- 3.8 Evolution Equations for Particle Distribution Functions -- 3.9 Fluid-Velocity and Particle-Velocity Lattice Boltzmann Methods -- 3.10 Appendix A: Equations of Motion in Various Coordinates -- 3.11 Appendix B: Equilibrium Particle Distribution Functions -- References -- 4 Constitutive Equations -- 4.1 Pressure and Incompressibility -- 4.2 Incompressible Viscoplastic Fluids -- 4.2.1 Equations of Motion for Incompressible Materials -- 4.3 Viscoplasticity Constraint Tensor -- 4.4 Regularisation -- 4.5 Compressible Viscoplastic Fluids -- 4.6 Constitutive Models for Incompressible Viscoplastic Fluids -- 4.6.1 One-Dimensional Models -- 4.6.2 Some Results from Tensor Analysis. , 4.6.3 Three-Dimensional Models -- References -- 5 Analytic Solutions: Steady Flows -- 5.1 Introduction -- 5.2 Simple Shearing Flow -- 5.3 Flow in a Channel -- 5.4 Flow Down an Inclined Plane -- 5.5 Poiseuille Flow -- 5.5.1 The Velocity Field and the Flow Rate -- 5.5.2 The Buckingham Equation -- 5.6 Axial Flow in a Concentric Annulus -- 5.7 Couette Flow -- 5.7.1 Flow Due to Positive Shear Stress -- 5.7.2 Lambert W Function -- 5.7.3 Fully Sheared Flow -- 5.7.4 Flow Due to Negative Shear Stress -- 5.8 Axial Couette-Poiseuille Flow -- 5.8.1 Axial Couette Flow -- 5.8.2 Axial Couette-Poiseuille Flow -- 5.9 Helical Flow -- 5.10 Herschel-Bulkley and Casson Fluids: Shear Rate Formulation -- 5.10.1 Herschel-Bukley Fluids -- 5.10.2 Casson Fluids -- 5.11 Herschel-Bukley Fluids: Partial Flow Rate Function Method -- 5.12 Herschel-Bulkley Fluids: Antiplane Shear Flow -- 5.13 Lambert W Function and the Papanastasiou Model -- 5.14 Flows with Wall Slip -- 5.14.1 Simple Shearing Flow -- 5.14.2 Channel Flow -- 5.14.3 Axisymmetric Poiseuille Flow -- 5.14.4 Annular Poiseuille Flow -- 5.14.5 Circular Couette Flow of a Bingham Fluid -- 5.14.6 Torsional Parallel Flow -- 5.15 Flows of Materials with Pressure Dependent Rheological Parameters -- 5.15.1 Channel Flow of a Bingham Fluid -- 5.15.2 Axisymmetric Poiseuille Flow of a Bingham Fluid -- 5.16 Heat Transfer Problems -- 5.16.1 Heat Transfer Between Parallel Plates -- 5.16.2 More General Problems -- References -- 6 Unsteady Shearing Flows -- 6.1 Unsteady Flow in a Channel -- 6.1.1 The Solution -- 6.1.2 Approximate Solution -- 6.2 A Numerical Solution to the Velocity Field -- 6.2.1 Approximate Evaluation -- 6.2.2 Numerical Comparison -- 6.3 Laplace Transform -- 6.4 Application of Maximum Principles -- 6.5 Unsteady Couette and Poiseuille Flows -- 6.6 Unsteady Flow in a Half-Space -- 6.6.1 An Initial Value Problem. , 6.6.2 Singular Surfaces in Motion -- 6.6.3 Hadamard Lemma and Unsteady Shearing Flows in Viscoplastic Fluids -- 6.6.4 Implications of the Continuity of σ/y at the Yield Surface -- 6.6.5 Extensions to Other Shearing Flows -- 6.6.6 Open-Ended Problems -- References -- 7 Analytical Approximation Techniques -- 7.1 The Lubrication Paradox -- 7.2 Steady Flow in a Wavy Channel-The Periodic Case -- 7.2.1 The Zeroth Order Solution -- 7.2.2 First Order Corrections -- 7.2.3 Breaking the Unyielded Plug -- 7.3 Circumventing the Lubrication Paradox -- 7.3.1 Flow of a Herschel-Bulkley Fluid in a Symmetric Channel -- 7.3.2 The Zeroth Order Solution -- 7.3.3 Flow in a Channel of Linearly Varying Width -- 7.3.4 Viscoplastic Flows in Axisymmetric Tubes -- 7.4 Slump Tests -- 7.4.1 The Fifty Cent Rheometer -- 7.4.2 Asymptotic Formulae for Cylinders of Large and Small Heights -- 7.4.3 Height of the Incipient Failure of a Circular Cylinder -- 7.4.4 The Dam Break and the Bostwick Consistometer -- 7.4.5 The Twin-Fluid Model -- 7.5 Hele-Shaw Flow Problems -- 7.5.1 The Symmetric Case -- 7.5.2 The Average Velocity Field in the Symmetric Case -- 7.5.3 Hele-Shaw Flow Equations -- 7.5.4 The Asymmetric Case -- 7.6 Linearised Stability Analysis -- References -- 8 Variational Principles and Variational Inequalities -- 8.1 Minimum and Maximum Principles for Incompressible Viscoplastic Fluids -- 8.1.1 Basic Definitions and Principle of Virtual Power -- 8.1.2 The Velocity and Stress Functionals -- 8.1.3 Proofs of the Theorems -- 8.1.4 Equality of Φ(u) and Ψ(T) -- 8.1.5 Shear Rate Dependent Yield Stress -- 8.1.6 Steady Flow in a Pipe of Uniform Cross-Section -- 8.2 Virtual Power and the Basic Inequality for Incompressible Viscoplastic Fluids -- 8.2.1 A Point-Wise Inequality: Isochoric Velocity Fields -- 8.2.2 The Integral Inequality. , 8.3 A General Energy Balance Equation for Viscoplastic Fluids -- 8.4 Fundamental Inequality: Non-isochoric Trial Velocity Fields -- 8.5 Variational Principles and Fundamental Inequality in the Presence of Wall Slip -- 8.6 Convex Analysis and Its Applications -- 8.6.1 The Direct Method -- 8.6.2 Convex Sets and Convex Functionals -- 8.6.3 Existence and Uniqueness -- 8.6.4 Variational Inequality -- 8.6.5 Equivalence of the Minimiser and the Solution of the Variational Inequality -- 8.7 Equivalence of the Solutions of the Variational Inequality … -- 8.8 Special Cases of the Variational Inequality -- 8.8.1 Flows with Zero Stress Power Difference -- 8.8.2 Flows with Non-zero Stress Power Difference -- 8.8.3 The Trilinear Functional Involving Acceleration Terms -- 8.9 Viscoplasticity Constraint Tensor: The Final Equivalence -- 8.10 The Basic Inequality for Compressible Viscoplastic Fluids -- References -- 9 Energy Methods in Action: Equality, Inequality and Stability -- 9.1 Axial Flow in a Pipe of Arbitrary Cross-Section -- 9.1.1 The Minimum Pressure Drop per Unit Length to Initiate a Steady Flow -- 9.1.2 Existence of Stagnant Zones -- 9.1.3 Bounds on the Magnitude of the Core and Its Maximum Velocity -- 9.2 Static Bubbles in Viscoplastic Fluids -- 9.2.1 Critical Value of the Bingham Number to Prevent Bubble Motion -- 9.2.2 Critical Value from Stress Maximisation -- 9.2.3 A Condition for a Bubble to Move: An Upper Bound for the Bingham Number -- 9.3 Motions of Rigid Bodies in Viscoplastic Fluids -- 9.3.1 Motion in an Unbounded Domain -- 9.3.2 Settling in Bounded Domains and Cheeger Sets -- 9.4 Initiation and Cessation of Shearing Flows -- 9.4.1 The Approach to the Steady State -- 9.4.2 The Proof of the Energy Inequality -- 9.4.3 Cessation of the Steady Flow in a Channel -- 9.4.4 Cessation of Steady Simple Shear Flow. , 9.4.5 Cessation of Steady Flow in a Pipe -- 9.4.6 Cessation of Steady Couette Flow -- 9.4.7 Effects of Wall Slip -- 9.5 Nonlinear Stability Analysis -- 9.5.1 Dissipation Terms -- 9.5.2 Global Stability Bounds -- 9.5.3 Conditional Stability -- References -- 10 Numerical Modelling -- 10.1 Augmented Lagrangian Methods: Finite Dimensional Case -- 10.2 Augmented Lagrangian Methods for Bingham Fluids -- 10.2.1 Optimality Conditions of the Augmented Lagrangian Functional -- 10.2.2 More General Problems -- 10.3 Operator-Splitting Method for Thermally Driven Flows -- 10.3.1 The Flow Problem and Mathematical Formulation -- 10.3.2 Non-dimensionalisation -- 10.3.3 Numerical Procedure -- 10.3.4 Discussion of the Results -- 10.4 Compressibility Effects: Numerical Experiments -- 10.4.1 Operator-Splitting Methods: Compressible Viscous Fluids -- 10.4.2 Compressible Viscoplastic Fluids: Isothermal Case -- 10.4.3 Operator-Splitting Method -- 10.5 Flow in a Cavity: Weakly Compressible Fluid -- 10.6 Shooting Method for the Flow in an Annulus -- 10.6.1 Helical Flows -- 10.7 Flow in Pipes of Square and Circular Cross-Sections -- 10.7.1 Theoretical Formulation -- 10.7.2 The Numerical Method -- 10.7.3 Boundary Conditions and Non-dimensional Variables -- 10.7.4 The Algorithm -- 10.7.5 The Lattice Speed σ -- 10.7.6 Results and Discussion -- 10.7.7 Flow in a Pipe of Circular Cross-Section -- 10.8 Thermally Influenced Lid-Driven Flow in a Square Cavity -- 10.8.1 Dimensional Equations -- 10.8.2 Non-dimensional Equations -- 10.8.3 The Continuity and Momentum Equations -- 10.8.4 The Energy Equation -- 10.8.5 Non-dimensional Variables -- 10.8.6 The Algorithm -- 10.8.7 Code Validation and Grid Independence -- 10.8.8 Results and Discussion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Fluid mechanics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (288 pages)
    Edition: 1st ed.
    ISBN: 9783662456170
    DDC: 532
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- 1 The Basic Features of Viscoplasticity -- 1.1 Bingham Fluid at Rest in a Channel -- 1.2 Sign of the Shear Stress -- 1.3 Critical Pressure Drop and the Constitutive Relation -- 1.4 The Solution -- 1.5 Flow Rate -- 1.6 Inherent Nonlinearity -- 1.7 Non-dimensionalisation -- 1.8 The Buckingham Equation -- 1.9 Free Boundary Problems -- 1.10 The Minimiser and the Variational Inequality -- 1.11 Effects of Wall Slip -- 1.12 Experimental Support -- 1.13 Summary -- References -- 2 Kinematics of Fluid Flow -- 2.1 Kinematical Preliminaries -- 2.2 Relation Between the Velocity and Deformation Gradients -- 2.3 Rigid Motion -- 2.4 Polar Decomposition, Spin and Stretching -- 2.5 Steady Velocity Fields and Their Rivlin-Ericksen Tensors -- References -- 3 Fundamental Equations -- 3.1 Conservation of Mass -- 3.2 Cauchy's First Law -- 3.3 Cauchy's Second Law -- 3.4 Conservation of Energy -- 3.5 Control Volume and Control Surface -- Reference -- 4 Constitutive Equations -- 4.1 Pressure and Incompressibility -- 4.1.1 The Meaning of Pressure -- 4.2 Incompressible Viscoplastic Fluids -- 4.2.1 Equations of Motion for Incompressible Materials -- 4.3 Viscoplasticity Constraint Tensor -- 4.4 Regularisation -- 4.5 Compressible Viscoplastic Fluids -- 4.6 Analogues for Incompressible Viscoplastic Fluids -- 4.6.1 One Dimensional Models -- 4.6.2 Some Results from Tensor Analysis -- 4.6.3 Three Dimensional Models -- References -- 5 Analytic Solutions: Steady Flows -- 5.1 Simple Shearing Flow -- 5.2 Flow in a Channel -- 5.3 Flow Down an Inclined Plane -- 5.4 Flow in a Pipe of Circular Cross-Section -- 5.4.1 The Buckingham Equation -- 5.5 Axial Flow in a Concentric Annulus -- 5.6 Couette Flow -- 5.7 Helical Flow -- 5.8 Steady Flows of General Viscoplastic Fluids -- 5.9 Heat Transfer Problems. , 5.9.1 Heat Transfer Between Two Parallel Plates -- 5.9.2 More General Problems -- References -- 6 Analytic Solutions: Unsteady Shearing Flows -- 6.1 Unsteady Flow in a Channel -- 6.1.1 The Solution -- 6.1.2 Approximate Solution -- 6.1.3 Laplace Transform -- 6.1.4 Application of Maximum Principles -- 6.2 Unsteady Couette and Poiseuille Flows -- 6.3 Unsteady Flow in a Half-Space -- 6.3.1 An Initial Value Problem -- 6.3.2 Singular Surfaces in Motion -- 6.3.3 Hadamard Lemma and Unsteady Shearing Flows in Viscoplastic Fluids -- 6.3.4 Implications of the Continuity of σ/y at the Yield Surface -- 6.3.5 Extensions to Other Shearing Flows -- 6.3.6 Open Ended Problems -- References -- 7 Analytical Approximation Techniques -- 7.1 The Lubrication Paradox -- 7.2 Steady Flow in a Wavy Channel---The Periodic Case -- 7.2.1 Zeroth Order Solution -- 7.2.2 First Order Corrections -- 7.2.3 Breaking the Unyielded Plug -- 7.3 Hele-Shaw Flow Problems -- 7.3.1 The Viscometric Fluidity Function -- 7.3.2 Papanastasiou Model -- 7.3.3 The Symmetric Case -- 7.3.4 The Average Velocity Field in the Symmetric Case -- 7.3.5 Hele-Shaw Flow Equations -- 7.3.6 The Asymmetric Case -- 7.4 Linearised Stability Analysis -- 7.5 Summary -- References -- 8 Variational Principles and Variational Inequalities -- 8.1 Minimum and Maximum Principles for Incompressible Viscoplastic Fluids -- 8.1.1 Basic Definitions and Principle of Virtual Power -- 8.1.2 The Velocity and Stress Functionals -- 8.1.3 Proofs of the Theorems -- 8.1.4 Equality of Φ(u) and Ψ(T) -- 8.1.5 Shear Rate Dependent Yield Stress -- 8.1.6 Steady Flow in a Pipe of Uniform Cross-Section -- 8.2 Virtual Power and the Basic Inequality for Incompressible Viscoplastic Fluids -- 8.2.1 A Point-Wise Inequality: Isochoric Velocity Fields -- 8.2.2 The Integral Inequality -- 8.3 A General Energy Balance Equation for Viscoplastic Fluids. , 8.4 Fundamental Inequality: Non-isochoric Trial Velocity Fields -- 8.5 Variational Principles and Fundamental Inequality in the Presence of Wall Slip -- 8.6 Convex Analysis and Its Applications -- 8.6.1 The Direct Method -- 8.6.2 Convex Set and Convex Functionals -- 8.6.3 Existence and Uniqueness -- 8.6.4 Variational Inequality -- 8.6.5 Equivalence of the Minimiser and the Solution of the Variational Inequality -- 8.7 Equivalence of the Solution of the Variational Inequality and the Equations of Motion -- 8.8 Special Cases of the Variational Inequality -- 8.8.1 Flows with Zero Stress Power Difference -- 8.8.2 Flows with Non-zero Stress Power Difference -- 8.8.3 The Trilinear Functional Involving Acceleration Terms -- 8.9 Viscoplasticity Constraint Tensor: The Final Equivalence -- 8.10 The Basic Inequality for Compressible Viscoplastic Fluids -- References -- 9 Energy Methods in Action: Equality, Inequality and Stability -- 9.1 Axial Flow in a Pipe of Arbitrary Cross-Section -- 9.1.1 The Minimum Pressure Drop per Unit Length to Initiate a Steady Flow -- 9.1.2 Existence of Stagnant Zones -- 9.1.3 Bounds on the Magnitude of the Core and Its Maximum Velocity -- 9.2 Static Bubbles in Viscoplastic Fluids -- 9.2.1 Critical Value of the Bingham Number to Prevent Bubble Motion -- 9.2.2 Critical Value from Stress Maximisation -- 9.2.3 A Condition for a Bubble to Move: An Upper Bound for the Bingham Number -- 9.3 Motions of Rigid Bodies in Viscoplastic Fluids -- 9.4 Initiation and Cessation of Unsteady Shearing Flows -- 9.4.1 The Approach to the Steady State -- 9.4.2 The Proof of the Energy Inequality -- 9.4.3 Cessation of the Steady Flow in a Channel -- 9.4.4 Cessation of Steady Simple Shear Flow -- 9.4.5 Cessation of Steady Flow in a Pipe -- 9.4.6 Cessation of Steady Couette Flow -- 9.4.7 Effects of Wall Slip -- 9.5 Nonlinear Stability Analysis. , 9.5.1 Dissipation Terms -- 9.5.2 Global Stability Bounds -- 9.5.3 Conditional Stability -- References -- 10 Numerical Modelling -- 10.1 Augmented Lagrangian Methods: Finite Dimensional Case -- 10.2 Augmented Lagrangian Methods for Bingham Fluids -- 10.2.1 Optimality Conditions of the Augmented Lagrangian Functional -- 10.2.2 More General Problems -- 10.3 Operator-Splitting Method for Thermally Driven Flows -- 10.3.1 The Flow Problem and Mathematical Formulation -- 10.3.2 Non-dimensionalisation -- 10.3.3 Numerical Procedure -- 10.3.4 Discussion of the Results -- 10.4 Compressibility Effects: Numerical Experiments -- 10.4.1 Operator-Splitting Methods: Compressible Viscous Fluids -- 10.4.2 Compressible Viscoplastic Fluids: Isothermal Case -- 10.4.3 Operator-Splitting Method -- 10.5 Flow in a Cavity: Weakly Compressible Fluid -- 10.6 Regularised Models -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 39 (1994), S. 705-707 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The analysis of normal and induced variation in gene expression is important for understanding the molecular mechanism of disease and the effects of environmental stress. The advent of microarray technology has provided the means to study expression of large numbers of genes in parallel. In our ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Cell Differentiation and Development 32 (1990), S. 433-438 
    ISSN: 0922-3371
    Keywords: Adhesin ; Collagen receptor ; Fibronectin ; Ligand
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods 143 (1977), S. 543-546 
    ISSN: 0029-554X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods 143 (1977), S. 547-549 
    ISSN: 0029-554X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods 155 (1978), S. 285-288 
    ISSN: 0029-554X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...