GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Metals -- Effect of radiation on. ; Electronic books.
    Description / Table of Contents: This book presents the results of time-dependent tight-binding simulations of radiation damage. It explores the effects of electronic excitations in collision cascades and ion channeling, and presents a new model.
    Type of Medium: Online Resource
    Pages: 1 online resource (309 pages)
    Edition: 1st ed.
    ISBN: 9783642154393
    Series Statement: Springer Theses Series
    Language: English
    Note: Intro -- The Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics -- Supervisor's Foreword -- Acknowledgements -- Contents -- Part I Introductory Material -- 1 Introduction -- 1.1…Why Simulate Radiation Damage? -- 1.2…Semi-classical Simulation as a Link in the Multi-scale Chain -- 1.3…How to Read this Thesis -- References -- 2 A Radiation Damage Cascade -- 2.1…The Early Stages -- 2.1.1 Ion Channelling -- 2.1.2 Sub-cascade Branching -- 2.2…The Displacement Phase -- 2.3…The Thermal Spike -- References -- 3 The Treatment of Electronic Excitations in Atomistic Simulations of Radiation Damage---A Brief Review -- 3.1…The Theoretical Treatment of Radiation Damage -- 3.2…The Electronic Stopping Regime -- 3.2.1 General Concepts -- 3.2.2 Models of Fast, Light Particle Stopping -- 3.2.2.1 Early Models -- 3.2.2.2 The Bohr Formula -- 3.2.2.3 The Bethe Formula -- 3.2.3 Expanding the Realm of Stopping Power Theory -- 3.2.4 Models of Fast, Heavy Particle Stopping -- 3.2.4.1 The Effective Charge of the Projectile -- 3.2.4.2 Non-Perturbative Models of Heavy Ion Stopping -- 3.2.4.3 Empirical Models of Stopping Power -- 3.2.5 Models of Slow, Heavy Particle Stopping -- 3.2.5.1 Binary Models of Slow Particle Stopping -- 3.2.5.2 Electron Gas models of Slow Particle Stopping -- 3.2.5.3 Non-Linear Calculations of Electron Gas Stopping -- 3.2.6 The Gaps in Stopping Power Theory -- 3.3…The Electron--Phonon Coupling Regime -- 3.3.1 The Importance of Electron--Phonon Coupling in Radiation Damage -- 3.3.2 Two-Temperature Models -- 3.3.3 Representing the Electron--Phonon Coupling -- 3.3.4 Models of Electron--Phonon Coupling -- 3.4…Electronic Effects in Atomistic Models of Radiation Damage -- 3.4.1 The Binary Collision Approximation -- 3.4.2 Molecular Dynamics Models -- 3.4.2.1 Molecular Dynamics with Electronic Drag -- 3.4.2.2 Electrons as a Heat Bath. , 3.5…Improving the Models: Incorporating Electrons Explicitly -- References -- 4 Theoretical Background -- 4.1…Overview -- 4.2…The Semi-Classical Approximation -- 4.2.1 The Ehrenfest Approximation -- 4.2.2 The Approximations in Ehrenfest Dynamics -- 4.3…The Independent Electron Approximation -- 4.3.1 Density Functional Theory -- 4.3.2 Time-Dependent Density Functional Theory -- 4.4…Tight-Binding Models -- 4.4.1 Ab-Initio Tight-Binding -- 4.4.2 Semi-Empirical Tight-Binding -- 4.4.3 The Harris--Foulkes Functional -- 4.4.4 Towards Semi-Empirical Tight-Binding -- 4.4.5 Self-Consistent Tight-Binding -- 4.5…Time-Dependent Tight-Binding -- 4.5.1 The Description of the System -- 4.5.2 The Evolution of our System -- 4.5.2.1 The Evolution of the Density Matrix -- 4.5.2.2 The Evolution of the Ionic System -- 4.6…Ehrenfest Dynamics -- 4.6.1 Ehrenfest Dynamics versus Surface Hopping -- 4.6.2 Energy Transfer in Ehrenfest Dynamics -- 4.7…Conclusions -- References -- Part II Simulating Radiation Damage in Metals -- 5 A Framework for Simulating Radiation Damage in Metals -- 5.1…A Simple Model Metal -- 5.1.1 The Parameters of the Model -- 5.1.2 The Electronic Structure of the Model -- 5.1.3 A Note on the Truncation of the Hopping Integrals -- 5.2…Ehrenfest Dynamics -- 5.3…spICED: Our Simulation Software -- References -- 6 The Single Oscillating Ion -- 6.1…Simulations of a Single Oscillating Ion -- 6.2…Simulation Results -- 6.2.1 Frequency and Temperature Dependence of Energy Transfer -- 6.2.2 Position and Direction Dependence -- 6.3…Theoretical Analysis of the System -- 6.4…Explaining the Results -- 6.4.1 High Frequency Cut-off -- 6.4.2 Isotropic Damping About Equilibrium Lattice Site -- 6.4.3 Absence of Energy Transfer at Some Frequencies -- 6.4.4 Frequency Independence of beta at High Temperature -- 6.5…Conclusions -- References. , 7 Semi-classical Simulations of Collision Cascades -- 7.1…The Evolution of a Cascade -- 7.1.1 Thermalization of the Initial Distribution -- 7.1.2 The Evolution of the Ions -- 7.2…The Electronic Subsystem -- 7.2.1 The Evolving Electronic System -- 7.2.1.1 The Non-crossing Theorem -- 7.2.2 Adiabaticity, Non-Adiabaticity and Electronic Excitations -- 7.2.2.1 A Toy Model of an Avoided Crossing -- 7.2.3 Achieving Adiabatic Evolution by Altering the Electron--Ion Mass Ratio -- 7.2.3.1 Some Cascade Simulations at High Ion Mass -- 7.2.4 The Irreversible Energy Transfer -- 7.3…Conclusions -- References -- 8 The Nature of the Electronic Excitations -- 8.1…Patterns of Excitation in Collision Cascades -- 8.1.1 Fitting a Pseudo-temperature -- 8.1.2 Why do We Obtain Hot Electrons? -- 8.1.3 The Importance of the Result -- 8.1.4 Thermalization or Thermal Excitation? -- 8.2…Electronic Entropy in Ehrenfest Simulations -- 8.2.1 Two Definitions of Electronic Entropy -- 8.2.2 Reconciling the Two Entropies -- 8.2.3 A Thought Experiment -- 8.3…Conclusions -- References -- 9 The Electronic Forces -- 9.1…Understanding the Electronic Force -- 9.2…The Effect of Electronic Excitations on the 'Conservative' Force -- 9.2.1 The Importance of the Reduction in the Attractive Electronic Force -- 9.2.1.1 The Effective Strain Due to Electronic Heating -- 9.2.2 Replacement Collision Sequences -- 9.2.2.1 Does the Non-adiabatic Force Have an Effect on RCS Dynamics? -- 9.3…Conclusions -- References -- 10 Channelling Ions -- 10.1…Semi-Classical Simulations of Ion Channelling -- 10.1.1 The Simulation Set-Up -- 10.1.2 The Evolution of a Channelling Simulation -- 10.1.3 Challenges in Simulating Ion Channelling -- 10.2…Steady State Charge -- 10.2.1 Results for a Non-Self-Consistent Model -- 10.2.2 A Perturbation Theory Analysis. , 10.2.2.1 A More Detailed Look at the Perturbation Theory Expression -- 10.2.2.2 A Toy Model -- 10.2.3 The Effect of Channelling Direction -- 10.2.4 The Effect of Charge Self-Consistency Parameters U and V -- 10.3…Electronic Stopping Power for a Channelling Ion -- 10.3.1 Results -- 10.3.2 The Origin of the Stopping Power: A Tight-Binding Perspective -- 10.3.2.1 Bond-Orders in Channelling Simulations -- 10.3.3 The 'Knee' in the Stopping Power for U = V = 0 -- 10.3.4 Effect of Onsite Charge Self-Consistency -- 10.3.4.1 A U-Dependent Mechanism for Suppressing the Bond-Orders -- 10.4…Conclusions -- References -- 11 The Electronic Drag Force -- 11.1…Is a Simple Drag Model Good Enough? -- 11.1.1 An Investigation of Damping Models for Total Energy Loss in Collision Cascades -- 11.2…The Microscopic Behaviour of the Non-Adiabatic Force -- 11.2.1 The Non-Adiabatic Force in Ehrenfest Dynamics -- 11.2.2 The Character of the Non-Adiabatic Force -- 11.3…An Improved Model of the Non-Adiabatic Force -- 11.3.1 A ''Non-Adiabatic Bond Model'' -- 11.3.2 The Performance of Our Proposed Model -- 11.3.2.1 The Irreversible Energy Transfer -- 11.3.2.2 The Non-Adiabatic Force -- 11.3.2.3 Model Performance at the Cascade Level -- 11.4…Conclusions -- References -- 12 Concluding Remarks -- 12.1…Our Aims -- 12.2…Our Results -- 12.2.1 The Nature of the Electronic Excitations -- 12.2.2 The Effect of Electronic Excitations on the Conservative Forces -- 12.2.3 Non-Adiabatic Effects on Channelling Ions -- 12.2.4 The Non-Adiabatic Force in Collision Cascades -- 12.3…Possible Directions for Further Research -- References -- 13 Appendices -- 13.1…Appendix A: Selected proofs -- 13.1.1 Proof of Equation (4.10)-(i) -- 13.1.2 Proof of Equation (4.10)-(ii) -- 13.1.3 Proof of Equation (4.12) -- 13.1.4 Proof of Equation (4.28) -- 13.1.5 Proof of Equation (4.85) -- 13.1.6 Proof of Equation (4.86). , 13.1.7 Proof of Equation (4.102) -- 13.1.8 Proof of Equation (4.131) -- 13.1.9 Proof of Equation (4.135) -- 13.1.10 Proof of Equation (4.137) -- 13.1.11 Proof of Equation (4.141): The Conservation of Total Energy -- 13.1.12 Proof of Increase of Pseudo-Entropy (8.16) -- 13.1.13 Proof of Equation (9.4) -- 13.1.14 Proof that Im{f4} = 0 -- 13.1.15 Proof of Equation (11.9) -- 13.1.16 Proof of Equation (11.12) -- 13.1.17 Proof of Equation (11.18) -- 13.2…Appendix B: Perturbation Theory -- 13.2.1 A Periodic Perturbation -- 13.2.2 The Effect of a Sinusoidal Perturbation on an Electronic System -- 13.2.2.1 The Irreversible Energy Transfer -- 13.2.2.2 Charge Transfer -- 13.2.2.3 First-Order Perturbation Theory Approximations -- The Time Dependence of the Energy and Charge Transfer -- Interpreting the Perturbation Theory Expressions -- Can We Neglect the Off-Diagonal Elements of \hat{\rho} in our Expression for {\Updelta }q_{\alpha}? -- Some Numerical Results -- 13.2.3 A Quantum Mechanical Oscillator -- 13.3…Appendix C: The Coupling Matrix for a Single Oscillating Ion -- 13.4…Appendix D: Some Features of the Electronic Excitation Spectrum in Collision Cascades -- 13.4.1 Anomalous Excitations Early in the Cascade -- 13.4.2 The Width of the Temperature Fitting Window -- 13.4.3 The Sommerfeld Expression for the Heat Capacity of Our Model -- 13.4.4 Behaviour of the Fitted Temperature Early in the Cascade -- 13.5…Appendix E: The Strain on an Inclusion due to Electronic Heating -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...