GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 648 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Regulators of G-protein signalling (RGS) proteins are a recently discovered class of proteins that modulate G-protein activity. More than 20 RGS proteins have been identified and are expressed throughout the body and brain. In particular, RGS4 appears to regulate dopamine receptor function and has been implicated in several dopamine related diseases, including schizophrenia. This study presents an extensive examination of the regional distribution of RGS4 mRNA in postmortem human brain. Using in situ hybridization, the expression levels of RGS4 mRNA were determined in human hemicoronal (Talairach sections +8 and −20) brain sections. In the rostral slice (Talairach +8) highest levels were found in the inferior frontal cortex, the superior frontal, and the cingulate cortex. Slightly lower levels were found in the insular cortex and inferior temporal cortex. The caudate, putamen and nucleus accumbens had lower levels. In the caudal slice (−20), the cortical layers showed the highest levels, with moderate levels observed in the parahippocampal gyrus, low levels in the CA-pyramidal region, and almost undetectable levels in the thalamus. In the frontal cortex a dense band was apparent near one of the inner layers of the cortex. In conclusion, RGS4 mRNA distribution in human postmortem tissue from normal persons was very dense in most cortical layers examined, with lower density in the basal ganglia and thalamus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurons and terminals in the ventral lateral portion of the central nucleus of the inferior colliculus (ICCN) of the rat were labelled immunocytochemically with antisera to GABA or to its synthesizing enzyme, glutamic acid decarboxylase. Four types of GABAergic neuron are described: small, medium-sized and large multipolar neurons, as well as medium-sized bipolar neurons. All sizes of GABAergic multipolar neurons are characterized by highly infolded nuclei, many mitochondria and both asymmetric and symmetric axosomatic synapses. A dense plexus of terminals occurs on the proximal dendrites of GABAergic neurons, and most of these terminals form asymmetric axodendritic contacts. Small GABAergic neurons (diameter 〈 15 μm) are multipolar, and have a large nucleus to cytoplasm ratio, prominent nucleoli and usually two to five axosomatic synapses per thin section, with the majority of these contacts being symmetric. Medium-sized GABAergic neurons (15–25 μm in diameter) display both multipolar and fusiform shaped somata, have a more abundant cytoplasm than the small neurons and show about ten axosomatic contacts per thin section. Large GABAergic neurons (diameters 〉 25 μm) have eccentrically located, highly infolded nuclei, abundant cytoplasm and a denser plexus of terminals that form axosomatic synapses than the other cell types. These results indicate that four of the six major cell types in the ICCN are probably GABAergic inhibitory neurons. The axon initial segments of GABAergic neurons in the ICCN all have similar features in that they are contacted by only one or two terminals that form symmetric synapses on their proximal portions and are invested by a glial sheath from 3 to 20 μm from the cell body. Many immunoreactive myelinated axons (approximately 0.5 μm in diameter) are observed and some terminals that arise from these axons form synapses with small neuronal somata. Both these and other labelled terminals are shown to form symmetric synapses. These data suggest a complex circuitry for the GABAergic neurons within the ICCN.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 15 (1986), S. 421-438 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Previous studies from this laboratory have indicated that increased numbers of GABAergic neurons, as well as total neurons, occur in the central nucleus of the inferior colliculus (IC) of genetically epilepsy-prone rats (GEPRs) as compared to non-seizuring Sprague-Dawley rats. Since electron microscopic studies of the IC have not been reported for rats, we wanted to determine the ultrastructure of neurons and their processes in this brain region to serve as a basis for future studies on neuronal circuitry in the GEPRs. Both disc-shaped and stellate types were found for each of three size categories: large, medium and small. Thus, six types of neuron were distinguished by differences in somatic size, shape, organelles and dendritic orientation. Large neurons (longest diameter greater than 25 μ,m), which are the least frequent cell type, contained vast perikaryal cytoplasm, eccentrically located nuclei and abundant granular endoplasmic reticulum (GER) adjacent to the nucleus as well as clustered in the cytoplasm; many axosomatic, symmetric synapses were present. Medium-sized neuronal somata (15–25 μm in diameter) had smooth as well as infolded nuclear membranes and clusters of GER in their cytoplasm but no GER adjacent to the nucleus; synapses were sparse along the surface of their somata. Small neurons (10–15 μm in diameter), which are the most frequent cell type, had scant perikaryal cytoplasm, usually infolded nuclei, frequently two nucleoli, and few or no stacked cisternae of GER in the perikaryal cytoplasm; only infrequent axosomatic synapses were found. Based on previous retrograde and immunocytochemical studies, most large disc-shaped and stellate cells project to the medial geniculate body and are probably excitatory, but some large stellate neurons have been shown to be GABAergic and it is doubtful that such neurons participate in this projection. A dense plexus of terminals that form symmetric synapses covers the soma and proximal dendrites of large neurons, and may provide a strong GABAergic inhibition of this type of projection neuron. Small and medium-sized disc-shaped cells also project to the thalamus but they lack this dense axosomatic plexus. The stellate cells from these same two size categories probably do not project to the thalamus and may be GABAergic local circuit neurons. Other ultrastructural features of IC neurons that were analysed include dendrites, dendritic spines, axon hillocks, initial segments and terminals, as well as the laminae of myelinated axons. Dendrites were either beaded or smooth and few spines were observed. The features of axon hillocks and initial segments of IC neurons were similar to those reported in other brain regions. Axon terminals were classified into five basic categories and some types may correlate with certain projections. The fibrous portions of laminae were composed of parallel fascicles of myelinated axons, some unmyelinated axons and a few dendrites. This description of the central nucleus of the inferior colliculus will provide a basis for future studies on neurotransmitter localization in normal rats and cytological changes in GEPRs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 15 (1990), S. 34-48 
    ISSN: 0741-0581
    Keywords: Amino acid neurotransmitter ; Inhibition ; Symmetric synapses ; Cerebral cortex ; Epilepsy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: GABA is a known inhibitory neurotransmitter in the mammalian brain. The site of GABAergic synapses can be determined with immunocytochemical methods that localize either GABA or its synthesizing enzyme, glutamate decarboxylase (GAD). In general, GABAergic axon terminals contain pleomorphic synaptic vesicles and form symmetric synapses. However, a small number of GABAergic axon terminals in selected brain regions (spinal cord, cerebellum, superior colliculus, striatum, globus pallidus, inferior olive, and substantia nigra) form asymmetric synapses. GAD- and GABA-immunoreactive processes that contain synaptic vesicles participate in every known morphological type of chemical synapse. These include axosomatic, axodendritic, axospinous, initial segment, axoaxonic, dendrodendritic, serial, reciprocal, and ribbon synapses. Although GABAergic synapses form a heterogeneous group, they most commonly form axosomatic, axodendritic, and initial segment synapses in the brain and spinal cord. These findings provide helpful guidelines for the identification of GABAergic synapses in future studies.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...