GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To examine the binding of antipsychotic drugs to living neurons, we applied fluoroprobe derivatives of the D2 antagonist spiperone to mesolimbic system neurons in postnatal culture. We found that rhodamine-N-(p-aminophenethyl)spiperone (rhodamine-NAPS) stereospecifically labeled the plasma membranes of 38 ± 6% of ventral tegmental area neurons, 22 ± 7% of which were dopaminergic, and 50 ± 6% of medium-sized putatively GABAergic nucleus accumbens neurons, with a time constant of ∼8 min. In contrast, the BODIPY derivative of NAPS rapidly labeled intracellular sites in all neurons in a punctate pattern, consistent with acidotropic uptake. Native antipsychotics also show acidotropic uptake, which we visualized by their displacement of the fluorescent weak base vital dye acridine orange from acidic intracellular compartments. We found that acidotropic uptake correlated best with the partition coefficients of the drugs. With a time constant of 23 min, rhodamine-NAPS labeled all neurons in a pattern suggestive of lipophilic solvation. Thus, initially rhodamine-NAPS makes possible visualization of D2 receptors on living neurons; however, acidotropic uptake and lipophilic solvation obscure receptor labeling and may account for time-dependent factors in the action of antipsychotic drugs, as well as affect their use as radioreceptor ligands.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To examine the substrate for dopamine (DA) synaptic action in the nucleus accumbens (nAcc), we visualized the cellular and subcellular distribution of DA receptors on postnatal nAcc neurons in culture using fluoroprobe derivatives of DA receptor ligands. Previously, we have shown that rhodamine-N-(p-aminophenethyl)-spiperone (NAPS) (10 nM), a derivative of the D2 antagonist spiperone, labels D2-like receptors on living nAcc neurons. We now show that rhodamine-Sch-23390 (30 nM), a derivative of the D1 antagonist, labels D1-like receptors. Putative specific membrane labeling reached a plateau after about 20 min. Labeling was stereospecific, as it was unaffected by competition with (−)-butaclamol, but blocked with (+)-butaclamol. We found that 52 ± 7% of nAcc medium-sized neurons showed D1 labeling, which extended onto the dendrites. Labeling was also seen on presynaptic terminals, often abutting D1-positive and D1-negative cell bodies, consistent with a presynaptic modulatory role for D1 receptors. Larger neurons, which may be GABAergic or cholinergic interneurons, were also labeled. By sequential labeling first with rhodamine-Sch-23390 and then rhodamine-NAPS, we found that 38 ± 6% of medium-sized neurons express both D1- and D2-like receptors, indicating that D1–D2 interactions may occur at the level of single postsynaptic neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Amphetamine-like psychostimulants are thought to produce rewarding effects by increasing dopamine levels at mesolimbic synapses. Paradoxically, dopamine uptake blockers, which generally increase extracellular dopamine, inhibit amphetamine-induced dopamine overflow. This effect could be due to either inhibition of amphetamine uptake or inhibition of dopamine efflux through the transporter (reverse transport). We used weak bases and dopamine uptake blockers in ventral midbrain neuron cultures to separate the effects on blockade of amphetamine uptake from reverse transport of dopamine. Amphetamine, ammonium chloride, tributylamine, and monensin, at concentrations that produce similar reductions in acidic pH gradients, increased dopamine release. This effect was inhibited by uptake blockers. Although in the case of amphetamine the inhibition of release could have been due to blockade of amphetamine uptake, inhibition also occurred with weak bases that are not transporter substrates. This suggests that reduction of vesicular pH gradients increases cytoplasmic dopamine which in turn promotes reverse transport. Consistent with this model, extracellular 3,4-dihydroxyphenylacetic acid was increased by ammonium chloride and monensin, as would be expected with elevated cytoplasmic dopamine levels. These findings extend the weak base mechanism of amphetamine action, in which amphetamine reduces vesicular pH gradients resulting in increased cytoplasmic dopamine that promotes reverse transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 654 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...