GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-09
    Description: Volcanic emissions are a source of halogens in the atmosphere. Rapid reactions convert the initially emitted hydrogen halides (HCl, HBr, and HI) into reactive species such as BrO, Br2, BrCl, ClO, OClO, and IO. The activation reaction mechanisms in the plume consume ozone (O3), which is entrained by ambient air that is mixed into the plume. In this study, we present observations of the oxidation of bromine, chlorine, and iodine during the first 11 min following emission, examining the plume from Santiago crater of the Masaya volcano in Nicaragua. Two field campaigns were conducted: one in July 2016 and one in September 2016. The sum of the reactive species of each halogen was determined by gas diffusion denuder sampling followed by gas chromatography–mass spectrometry (GC-MS) analysis, whereas the total halogens and sulfur concentrations were obtained by alkaline trap sampling with subsequent ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) measurements. Both ground and airborne sampling with an unoccupied aerial vehicle (carrying a denuder sampler in combination with an electrochemical SO2 sensor) were conducted at varying distances from the crater rim. The in situ measurements were accompanied by remote sensing observations (differential optical absorption spectroscopy; DOAS). The reactive fraction of bromine increased from 0.20 ± 0.13 at the crater rim to 0.76 ± 0.26 at 2.8 km downwind, whereas chlorine showed an increase in the reactive fraction from (2.7 ± 0.7) × 10−4 to (11 ± 3) × 10−4 in the first 750 m. Additionally, a reactive iodine fraction of 0.3 at the crater rim and 0.9 at 2.8 km downwind was measured. No significant change in BrO / SO2 molar ratios was observed with the estimated age of the observed plume ranging from 1.4 to 11.1 min. This study presents a large complementary data set of different halogen compounds at Masaya volcano that allowed for the quantification of reactive bromine in the plume of Masaya volcano at different plume ages. With the observed field data, a chemistry box model (Chemistry As A Boxmodel Application Module Efficiently Calculating the Chemistry of the Atmosphere; CAABA/MECCA) allowed us to reproduce the observed trend in the ratio of the reactive bromine to total bromine ratio. An observed contribution of BrO to the reactive bromine fraction of about 10 % was reproduced in the first few minutes of the model run.
    Description: Published
    Description: 3371–3393
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-21
    Description: Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, HOBr, BrO, and BrONO2) while being unreactive to HBr (OS −1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB—other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br2, Cl2, and I2. In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values 〈44% for plume ages 〈1 min, which is consistent with the assumed plume age at the sampling sites.
    Description: Published
    Description: 5975–5985
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Diffusion denuder ; Volcanic halogens ; Molecular bromine ; Gas chromatography-mass spectrometry ; Gas emission
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-07
    Description: Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1).
    Description: Published
    Description: eabb9103
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; carbon cycle ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-02
    Description: Volcanoes are a natural source of several reactive gases (e.g., sulfur and halogen containing species) and nonreactive gases (e.g., carbon dioxide) to the atmosphere. The relative abundance of carbon and sulfur in volcanic gas as well as the total sulfur dioxide emission rate from a volcanic vent are established parameters in current volcanomonitoring strategies, and they oftentimes allow insights into subsurface processes. However, chemical reactions involving halogens are thought to have local to regional impact on the atmospheric chemistry around passively degassing volcanoes. In this study we demonstrate the successful deployment of a multirotor UAV (quadcopter) system with custom-made lightweight payloads for the compositional analysis and gas flux estimation of volcanic plumes. The various applications and their potential are presented and discussed in example studies at three volcanoes encompassing flight heights of 450 to 3300m and various states of volcanic activity. Field applications were performed at Stromboli volcano (Italy), Turrialba volcano (Costa Rica) and Masaya volcano (Nicaragua). Two in situ gas-measuring systems adapted for autonomous airborne measurements, based on electrochemical and optical detection principles, as well as an airborne sampling unit, are introduced. We show volcanic gas composition results including abundances of CO2, SO2 and halogen species. The new instrumental setups were compared with established instruments during ground-based measurements at Masaya volcano, which resulted in CO2 = SO2 ratios of 3.6 0.4. For total SO2 flux estimations a small differential optical absorption spectroscopy (DOAS) system measured SO2 column amounts on transversal flights below the plume at Turrialba volcano, giving 1776 1108 T d􀀀1 and 1616 1007 T d􀀀1 of SO2 during two traverses. At Stromboli volcano, elevated CO2 = SO2 ratios were observed at spatial and temporal proximity to explosions by airborne in situ measurements. Reactive bromine to sulfur ratios of 0.19 104 to 9.8 10􀀀4 were measured in situ in the plume of Stromboli volcano, down wind of the vent.
    Description: Published
    Description: 2441-2457
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-11
    Description: Gas measurements using unmanned aerial vehicles, or drones, were undertaken at Turrialba volcano, Costa Rica, and Masaya volcano, Nicaragua, in 2016 and 2017. These two volcanoes are the largest time‐integrated sources of gas in the Central American Volcanic Arc, and both systems are currently extremely active with potential for sudden destabilization. We employed a series of miniaturized drone‐mounted instrumentation including a mini‐DOAS, two MultiGAS instruments, and an optical particle counter, supplemented by ground‐based measurements. Payloads were typically 1–1.5 kg and flight times were 10–15 min. The measurements were both accurate and precise due to the inherent sensitivity of the instrumentation and the high gas concentrations, which the drones were able to sample. The quality of data obtained by our drones was comparable to that obtained by our ground‐based measurements. At Turrialba in April 2017, we measured an average SO2 flux of 1,380 ± 280 T/day, CO2/SO2 of 6.5, and H2O/SO2 of 27.8. Using these values, we calculated a CO2 flux of 6,170 T/day and an H2O flux of 10,790 T/day. At Masaya in May 2017, the average SO2 flux was 1,560 ± 180 T/day, with CO2/SO2 of 3.9 and H2O/SO2 of 62.3, giving a mean CO2 flux of 4,150 T/day and mean H2O flux of 27,330 T/day. The elevated carbon and water fluxes and ratios are indicative of underlying magmas that are enriched in these components, resulting in the high levels of activity observed.
    Description: Published
    Description: 6501-6520
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-11
    Description: Major, minor and trace element concentrations of single rainfall events were investigated at Masaya volcano (Nicaragua) in order to determine the relative contributions of volcanogenic elements. Most of the samples were collected in the summit area of the volcano around the Santiago crater, and two samples, representative of the local background, were collected at a 4.3 km upwind site. Samples from the summit are very acidic with pH down to 2.14 and contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the continuously degassing lava lake of the Santiago crater, Masaya volcano. The emissions result in a volcanic plume that includes solid particles, acidic droplets, and gaseous species. The plume-rain interaction imprints the chemical signature of the volcanic emissions in falling raindrops. The most acidic gases (e.g. HCl and HI) readily dissolve in water, and so their ratio in rain samples reflects that of the volcanic plume. The transport of HF is mediated by the large amount of silicate particles generated at the lava–air interface. SO2 is only partially converted into H2SO4 that dissolves in water. The refractory elements dissolved in rain samples derive from the dissolution of silicate particles, and most of them (Al, Mg, Ca, Fe, Be, Ti, Mn, and Sr) are present at exactly the same molar ratios as in the rocks as well as rare earth elements (REEs). By contrast, Li, Na, K, Cr, Ni, Cu, Zn, Rb, Cd, Sb, Te, Cs, Tl, Pb, and Bi are enriched relative to the whole-rock composition, suggesting that they are volatilized during magma degassing. After correcting for the dissolution of silicate particles, we can define the relative volatility of these elements. The comparison with other volcanoes on the Pb emissions highlights the effect of oxygen fugacity in determining its volatility.
    Description: Published
    Description: 120562
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-07
    Description: Volcanic degassing provides important information for the assessment of volcanic hazards. Santa Ana and San Miguel are open vent volcanoes along the Central American Volcanic Arc–CAVA, where the magmatism, basaltic to dacitic, is related to the near-orthogonal convergence of the Caribbean Plate and the subducting Cocos Plate. Both volcanoes are the most active ones in El Salvador with recent eruptive events in October 2005 (Santa Ana) and December 2013 (San Miguel), but still not much data on gas composition and emission are available today. At each volcano, SO2 emissions are regularly monitored using ground-based scanning Differential Optical Absorption Spectrometer (Scan-DOAS) instruments that are part of the global “Network for Observation of Volcanic and Atmospheric Change” (NOVAC). We used the data series from these NOVAC stations in order to retrieve SO2 and minimum bromine emissions, which can be retrieved from the same spectral data for the period 2006–2020 at Santa Ana and 2008–2019 at San Miguel. However, BrO was not detected above the detection limit. SO2 emission ranged from 10 to 7,760 t/d, and from 10 to 5,870 t/d for Santa Ana and San Miguel, respectively. In addition, the SO2 emissions are complemented with in situ plume data collected during regular monitoring surveys (2018–2020) and two field campaigns in El Salvador (2019 and 2020). MultiGAS instruments recorded CO2, SO2, H2S and H2 concentrations. We determined an average CO2/SO2 ratio of 2.9 ± 0.6 when peak SO2 concentration exceeded 15 ppmv at Santa Ana, while at San Miguel the CO2/SO2 ratio was 7.4 ± 1.8, but SO2 levels reached only up to 6.1 ppmv. Taking into account these ratios and the SO2 emissions determined in this study, the resulting CO2 emissions are about one order of magnitude higher than those determined so far for the two volcanoes. During the two field campaigns Raschig tubes (active alkaline trap) were used to collect plume samples which were analyzed with IC and ICP-MS to identify and quantify CO2, SO2, HCl, HF, and HBr. Additionally, also 1,3,5-trimethoxybenzene (TMB)-coated denuders were applied and subsequently analyzed by GC-MS to determine the sum of the reactive halogen species (RHS: including Cl2, Br2 , interhalogens, hypohalous acids). The RHS to sulfur ratios at Santa Ana and San Miguel lie in the range of 10−5. Although no new insights could be gained regarding changes with volcanic activity, we present the most comprehensive gas geochemical data set of Santa Ana and San Miguel volcanoes, leading to a solid data baseline for future monitoring purposes at both volcanoes and their improved estimate of CO2, SO2 and halogens emissions. Determining the reactive fraction of halogens is a first step towards a better understanding of their effects on the atmosphere.
    Description: Published
    Description: 1049670
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...