GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Cancer cells. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (618 pages)
    Edition: 1st ed.
    ISBN: 9780128096031
    Series Statement: Issn Series
    DDC: 571.6
    Language: English
    Note: Front Cover -- Molecular and Cellular Changes in the Cancer Cell -- Copyright -- Contents -- Contributors -- Preface -- Part I: Overview: Genetic, Epigenetic and Cell Signaling Alterations -- Chapter One: Molecular and Cellular Changes During Cancer Progression Resulting From Genetic and Epigenetic Alterations -- 1. Introduction -- 1.1. Types of Chromatin -- 1.2. The Nucleosome and the Core Epigenetic Modifications -- 1.3. DNase Hypersensitivity Sites Are Linked With the Epigenomic Landscape -- 1.4. Depositing, Removing, and Interpreting Epigenetic Marks -- 2. DNA Methylation -- 2.1. Genome-Wide DNA Hypomethylation -- 2.2. Tumor Suppressor Gene Hypermethylation -- 2.3. CpG Island Methylator Phenotype -- 2.4. Viral Influences on Aberrant DNA Methylation -- 2.5. Therapeutic Reversal of Aberrant DNA Methylation -- 3. Lysine Acetylation -- 3.1. Acetyltransferases -- 3.2. Class I, II, and IV Deacetylases -- 3.3. Alterations in Class I, II, and IV Deacetylases in Human Tumors -- 3.4. Class I/II Deacetylase Inhibition -- 3.5. Sirtuins -- 3.6. Multiple SIRT1 Nonhistone Targets -- 3.7. Sirtuins in Cancer -- 3.8. Sirtuin Inhibition -- 4. Lysine and Arginine Methylation -- 4.1. Lysine Methyltransferases -- 4.2. Arginine Methyltransferases -- 4.3. Alterations in the MLL Lysine Methyltransferases in Human Tumors -- 4.4. Lysine Demethylases -- 4.5. Alterations in Lysine Demethylases in Human Tumors -- 5. Noncoding RNA -- 6. Epigenetic Readers -- 6.1. Readers of DNA Methylation -- 6.2. Readers of Lysine Acetylation and Methylation -- 7. Concluding Remarks -- References -- Chapter Two: Wnt/β Catenin-Mediated Signaling Commonly Altered in Colorectal Cancer -- 1. Wnt Signaling in Colorectal Cancer -- 1.1. Introduction to Wnt Signaling -- 1.2. Canonical Wnt Signaling and Colorectal Cancer -- 2. Mutations in the Wnt Signaling Pathway. , 2.1. Adenomatous Polyposis Coli -- 2.2. β-Catenin -- 2.3. Axin and Other Wnt Signaling Components -- 3. Cancer Stem Cells -- 3.1. Introduction to Cancer Stem Cells -- 3.2. Wnt: The Key Player in Cancer Cell Stemness -- 3.3. Cancer Stem Cell Markers -- 4. Treatments -- 4.1. Shortcomings of Current Treatment Regimes -- 4.2. ICG-001: Specific β-Catenin Inhibitor -- 4.3. Repurposed Drugs -- 4.4. Niclosamide: Antihelminth to Anticancer -- 4.5. Nitazoxanide: A Safer Relative of Niclosamide -- 4.6. Silibinin -- 4.7. Monensin -- 4.8. Other Wnt Inhibitors -- 5. Markers for Early Detection and Prognosis -- 5.1. Carcinoembryonic Antigen -- 5.2. APC and β-Catenin -- 5.3. S100A4 -- 5.4. Cancer Stem Cell Markers: CD133, CD44, ALDH1, and LGR5 -- 6. Summary -- References -- Chapter Three: Interplay Between Inflammation and Epigenetic Changes in Cancer -- 1. Introduction -- 2. Complex Relationship Between the Immune System and Cancer -- 2.1. Innate Immunity -- 2.2. Innate Immune Response in Tumors -- 2.3. Adaptive Immunity -- 2.4. Adaptive Immune Response in Tumors -- 3. Chronic Inflammatory Diseases Predispose Individuals to Cancer -- 3.1. H. pylori Infection and Gastric Cancer -- 3.2. Hepatitis C Virus (HCV) and Liver Cancer -- 3.3. Barrett´s Esophagus and Esophageal Cancer -- 3.4. IBD and Colorectal Cancer (CRC) -- 3.5. Ultraviolet (UV) Radiation and Skin Cancer -- 4. Overview of Epigenetics and Its Role in Normal Physiological Processes and Cancer -- 4.1. Overview of Epigenetics -- 4.1.1. Noncoding RNAs -- 4.1.2. Histone Modifications -- 4.1.3. DNA Methylation -- 4.2. Importance of Epigenetics in Embryonic Development -- 4.3. Importance of Epigenetics in Immune Cell Differentiation and Cytokine Expression -- 4.4. Epigenetic Alterations and Their Importance in Cancer Initiation and Progression. , 4.4.1. Silencing of Tumor Suppressor Genes and Activation of Oncogenes -- 4.4.2. Epigenetic Alterations That Allow Cancer Cells to Evade the Immune System -- 5. The Role of Inflammation in Initiating Epigenetic Alterations -- 5.1. Epidemiological Evidence Supporting a Connection Between Inflammation and Aberrant Epigenetic Alterations -- 5.2. In Vivo Studies Demonstrating a Relationship Between Inflammation and Epigenetic Alterations -- 5.3. In Vitro Studies Demonstrating a Relationship Between Inflammation and Epigenetic Alterations -- 5.4. Molecular Mechanisms Underlying Inflammation-Induced Epigenetic Alterations -- 5.4.1. Alteration of Cellular Metabolism and Epigenetic Protein Cofactors -- 5.4.2. The Role of DNA Damage in Inflammation-Induced Epigenetic Alterations -- 6. Cancer Prevention and Treatment -- 6.1. Antiinflammatory Agents -- 6.2. HDAC Inhibitors -- 6.3. Histone Lysine Demethylase Inhibitors -- 6.4. BET Inhibitors -- 6.5. Histone Lysine Methyltransferase Inhibitors -- 6.6. DNA Methyltransferase Inhibitors -- 6.7. Dietary Compounds -- 6.8. Immunotherapy -- 6.9. Combination Therapy -- 7. Concluding Remarks -- References -- Part II: Viral Influences in Cancer Initiation and Progression -- Chapter Four: Viral Carcinogenesis -- 1. RNA Retroviruses -- 1.1. History -- 1.2. Human T Cell Lymphotropic Virus 1 (HTLV-1) -- 1.3. Human Immunodeficiency Virus (HIV) -- 2. DNA Viruses -- 2.1. History -- 2.2. Simian Vacuolating Virus (SV40) -- 2.3. SV40 and Rb -- 2.4. SV40 and p53 -- 2.5. Human Papilloma Virus (HPV) -- 2.6. Human Polyoma Virus -- 2.7. Epstein-Barr Virus (EBV, HHV-4) -- 2.8. Kaposi´s Sarcoma-Associated Herpesvirus (KSHV, HHV-8) -- 2.9. Hepatitis B Virus (HBV) -- 3. RNA Viruses -- 3.1. Hepatitis C Virus (HCV) -- 4. Conclusion -- References -- Chapter Five: The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. , 1. Introduction -- 2. The Stromal Microenvironment -- 3. The HPV Life Cycle -- 3.1. Two Caveats -- 4. Growth Factors -- 4.1. Transforming Growth Factor-Beta -- 4.1.1. Functions as a Growth Inhibitor and Activator -- 4.1.2. Interaction With HPV -- 4.2. Epidermal Growth Factor -- 4.2.1. EGFR Signaling -- 4.2.2. Relationship With HPV -- 4.3. Other Growth Factors -- 5. Fibroblasts -- 5.1. Fibroblasts as Epithelial Support Cells -- 5.2. Cancer-Associated Fibroblasts -- 5.3. Estrogen in the Stroma -- 6. Immune Interactions -- 6.1. Immunology of Stratified Epithelia -- 6.2. Innate Immune Responses Against HPV -- 6.2.1. TLRs and Nuclear Factor Kappa B -- 6.2.2. IFN Signaling -- 6.2.2.1. IFN and HPV -- 6.2.2.2. IFNκ -- 6.3. HPV Effects on Immune Cells -- 6.3.1. Langerhans Cells -- 6.3.1.1. Epithelial Recruitment -- 6.3.1.2. Differentiation and Maintenance -- 6.3.1.3. Maturation and Migration -- 6.3.1.4. LC Function -- 6.3.2. T Cells -- 6.3.2.1. HPV Interferes With Antigen Processing -- 6.3.2.2. T Cell Epitopes Are Poorly Immunogenic in the Context of Infection -- 6.3.2.3. HPV Skews the T Cell Response Away From Th1 -- 6.3.3. Other Cell Types -- 6.4. Soluble Immune Factors -- 6.4.1. Cytokines and Chemokines -- 6.4.2. Immune Functions of TGFβ -- 6.4.2.1. Innate Immunity -- 6.4.2.2. Cellular Immunity -- 6.4.2.3. TGFβ in Cervical Lesions -- 6.4.3. EGFR and the Immune Response -- 7. Angiogenesis and the Hypoxic Response -- 7.1. Angiogenesis in HPV Lesions -- 7.2. Regulation of Hypoxic Response and Angiogenesis by HPV -- 8. ECM and MMPs -- 9. Unresolved Questions -- References -- Part III: Pancreatic Cancer: Altered Signaling Networks and Emerging Treatment Strategies -- Chapter Six: Molecular Pathogenesis of Pancreatic Cancer -- 1. Introduction -- 2. Genetic Alterations in Pancreatic Cancer -- 2.1. Oncogenic KRAS Mutations -- 2.2. Tumor Suppressor Genes. , 2.3. TGF-β/SMAD4 Alterations -- 2.4. Telomere Abnormalities -- 3. Deregulated EMT in Pancreatic Cancer -- 4. Molecular Subtype Classifications of Pancreatic Cancer -- 5. Deregulated Signaling Networks in Pancreatic Cancer -- 5.1. The EGFR-KRAS Network -- 5.2. Hippo Signaling -- 5.3. Inflammation -- 5.4. Autophagy -- 6. Current and Future Therapeutic Strategies for Pancreatic Cancer -- 7. Conclusions -- References -- Chapter Seven: Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer -- 1. Introduction -- 2. Current Therapeutic Strategies -- 2.1. Surgery -- 2.2. Chemotherapy -- 2.3. Radiotherapy -- 3. Novel and Emerging Therapeutic Options -- 3.1. Immunotherapy-Based Approaches -- 3.1.1. Passive Immunotherapy -- 3.1.2. Active Immunotherapy -- 3.1.3. Immune Checkpoint Inhibitors -- 3.2. Chemoprevention and Neoadjuvant Strategies -- 3.2.1. Curcumin -- 3.2.2. Epiallocatechin-3-Gallate -- 3.2.3. Nonsteroidal Antiinflammatory Drugs -- 3.3. Hyaluronan and CD44 -- 3.4. Stromal Disruption -- 3.5. Epigenetics -- 3.5.1. DNA Methylation -- 3.5.2. Histone Modification -- 3.5.3. Histone Acetylation/Deacetylation -- 3.5.4. Histone Methylation -- 3.6. Noncoding RNAs -- 3.6.1. Long Noncoding RNA and PDAC -- 3.6.2. MicroRNAs and PDAC -- 3.6.3. Other Potential PDAC ncRNA Targets -- 3.7. PARP1 Inhibitors -- 4. Concluding Remarks -- References -- Part IV: Soft Tissue Sarcomas: Genomic and Epigenomic Alterations -- Chapter Eight: Molecular Changes Associated With Tumor Initiation and Progression of Soft Tissue Sarcomas: Targeting the ... -- 1. Introduction -- 2. Clinical Parameters of EWSR1-Translocation-Associated Soft Tissue Sarcoma Subtypes -- 2.1. Desmoplastic Small Round Cell Tumor (DSRCT) -- 2.2. Ewing´s Sarcoma (EWS) -- 2.3. Clear Cell Sarcoma of Soft Tissue (CCSST) -- 2.4. Extraskeletal Myxoid Chondrosarcoma (EMCS). , 2.5. Angiomatoid Fibrous Histiocytoma (AFH).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...