GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP+. We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP+ treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A cDNA library of substantia nigra pars compacta from a patient with Parkinson's disease (PD) was differentially screened with probes of normal and parkinsonian substantia nigra enriched in neuronal transcripts. Fifty-eight clones were isolated; 39 were subunits of mitochondrial respiratory complexes I and IV. Parallel screening of a cDNA library derived from normal substantia nigra confirmed differential representation of the transcripts in the substantia nigra pars compacta. In situ hybridization in postmortem brain from parkinsonian and control subjects, with representative complex I and complex IV probes, showed increased labeling, at the cellular level, of the complex I subunit ND1 in neurons of the lateral substantia nigra, where cell death is greatest in PD, but decreased labeling in the medial substantia nigra where fewer cells die. Expression of a complex IV subunit, COXI, increased, however, in both parts of the structure. Increased expression of ND1 and COXI was also observed in nerve growth factor-differentiated PC12 cells undergoing apoptosis induced by tumor necrosis factor-α, suggesting that the differential regulation of certain mitochondrial mRNAs may be associated with this form of cell death. This in vitro model of apoptosis is potentially relevant to the death of dopaminergic neurons in PD, because these cells express the tumor necrosis factor-α receptor, and neighboring microglial cells in patients synthesize the cytokine.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Reduced activity of the mitochondrial respiratory chain – particularly complex I – may be implicated in the etiology of both Parkinson's disease and progressive supranuclear palsy, although these neurodegenerative diseases differ substantially as to their distinctive pattern of neuronal cell loss and the predominance of cerebral α-synuclein or tau protein pathology. To determine experimentally whether chronic generalized complex I inhibition has an effect on the distribution of α-synuclein or tau, we infused rats systemically with the plant-derived isoflavonoid rotenone. Rotenone-treated rats with a pronounced metabolic impairment had reduced locomotor activity, dystonic limb posture and postural instability. They lost neurons in the substantia nigra and in the striatum. Spherical deposits of α-synuclein were observed in a few cells, but cells with abnormal cytoplasmic accumulations of tau immunoreactivity were significantly more numerous in the striatum of severely lesioned rats. Abnormally high levels of tau immunoreactivity were found in the cytoplasm of neurons, oligodendrocytes and astrocytes. Ultrastructurally, tau-immunoreactive material consisted of straight 15-nm filaments decorated by antibodies against phosphorylated tau. Many tau+ cell bodies also stained positive for thioflavin S, nitrotyrosine and ubiquitin. Some cells with abnormal tau immunoreactivity contained activated caspase 3. Our data suggest that chronic respiratory chain dysfunction might trigger a form of neurodegeneration in which accumulation of hyperphosphorylated tau protein predominates over deposits of α-synuclein.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In Parkinson's disease, nigral dopaminergic neurones degenerate, whereas post-synaptic striatal target neurones are spared. In some atypical parkinsonian syndromes, both nigral and striatal neurones degenerate. Reduced activity of complex I of the mitochondrial respiratory chain has been implicated in both conditions, but it remains unclear if this affects the whole organism or only the degenerating brain structures. We therefore investigated the differential vulnerability of various brain structures to generalized complex I inhibition. Male Lewis rats infused with rotenone, a lipophilic complex I inhibitor [2.5 mg/kg/day intraveneously (i.v.) for 28 days], were compared with vehicle-infused controls. They showed reduced locomotor activity and loss of striatal dopaminergic fibres (54%), nigral dopaminergic neurones (28.5%), striatal serotoninergic fibres (34%), striatal DARPP-32-positive projection neurones (26.5%), striatal cholinergic interneurones (22.1%), cholinergic neurones in the pedunculopontine tegmental nucleus (23.7%) and noradrenergic neurones in the locus ceruleus (26.4%). Silver impregnation revealed pronounced degeneration in basal ganglia and brain stem nuclei, whereas the hippocampus, cerebellum and cerebral cortex were less affected. These data suggest that a generalized mitochondrial failure may be implicated in atypical parkinsonian syndromes but do not support the hypothesis that a generalized complex I inhibition results in the rather selective nigral lesion observed in Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...