GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Neurosciences. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (361 pages)
    Edition: 1st ed.
    ISBN: 9783319520735
    Series Statement: Springer Handbook of Auditory Research Series ; v.62
    DDC: 612.858
    Language: English
    Note: Intro -- Acoustical Society of America -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- 1 Major Advances in Cochlear Research -- Abstract -- 1.1 Introduction -- 1.2 The Cochlea: What It Is, Where It Came From, and What Is Special About It -- 1.3 New Directions in Cochlear Development -- 1.4 Mechanical Transduction Processes in the Hair Cell -- 1.5 Prestin: Molecular Mechanisms Underlying Outer Hair Cell Electromotility -- 1.6 Electromechanical Feedback Mechanisms and Power Transfer in the Mammalian Cochlea -- 1.7 Hair Cells and Their Synapses -- 1.8 Afferent Coding and Efferent Control in the Normal and Impaired Cochlea -- 1.9 Ion and Fluid Homeostasis in the Cochlea -- 1.10 Remote Sensing the Cochlea: Otoacoustics -- 1.11 Localized Internal Stimulation of the Living Cochlea Using Electrical and Optical Methods -- 1.12 Summary and Outlook -- Compliance with Ethics Requirements -- References -- 2 The Cochlea: What It Is, Where It Came From, and What Is Special About It -- Abstract -- 2.1 Introduction -- 2.2 Where Did the Cochlea Come From? -- 2.3 What Is Special About the Cochlea? -- 2.3.1 The Loss of the Lagena -- 2.3.2 The Advent of Bony Laminae -- 2.3.3 Modifications of the Prestin Molecule -- 2.4 Did Coiling Have Any Effect on Function? -- 2.5 The Cochlea (Also) Determines the Hearing Range -- 2.6 Variation in Cochlear Form and Dimensions -- 2.7 Cochleae and Other Hearing Organs -- 2.8 Summary -- Compliance with Ethics Requirements -- References -- 3 New Directions in Cochlear Development -- Abstract -- 3.1 Introduction -- 3.2 Embryonic Origin of the Mammalian Cochlea -- 3.2.1 Defining the Cardinal Axes of the Inner Ear -- 3.2.2 Transforming the Ventral Otocyst into the Cochlear Duct -- 3.2.3 Outstanding Issues Concerning the Embryonic Origin of the Cochlea -- 3.3 Formation of the Cochlear Prosensory Domain. , 3.3.1 Role of Notch Signaling and Sox2 in the Formation of Prosensory Patches -- 3.3.2 Role of Other Signaling Pathways in the Induction of the Cochlear Prosensory Domain: Fibroblast Growth Factors, Bone Morphogenetic Proteins, and Wnts -- 3.3.3 Outstanding Issues Concerning the Induction and Radial Patterning of the Prosensory Domain -- 3.4 Coordinating Developmental Gradients of Differentiation and Cell Cycle Exit in the Cochlea -- 3.4.1 The Unusual Pattern of Cell Cycle Exit and Differentiation in the Cochlea -- 3.4.2 How Are Cell Cycle Exit and Differentiation Uncoupled in the Cochlea? -- 3.4.3 Outstanding Issues Concerning Cell Cycle Exit and Differentiation in the Prosensory Domain -- 3.5 Fine-Grained Patterning and Cell-Type Specification in the Organ of Corti -- 3.5.1 Notch Signaling as a Mechanism to Distinguish Hair Cells from Supporting Cells -- 3.5.2 Specification of Subtypes of Hair Cells and Supporting Cells in the Organ of Corti -- 3.5.3 Outstanding Issues Concerning the Specification of Hair Cell and Supporting Cell Subtypes -- 3.6 Innervation of the Organ of Corti -- 3.6.1 Neurogenesis of the Spiral Ganglion -- 3.6.2 Development of Afferent Innervation -- 3.6.3 Development of Efferent Innervation -- 3.6.4 Unresolved Questions in Afferent and Efferent Innervation of the Cochlea -- 3.7 Concluding Thoughts -- 3.7.1 How Does the Cochlea Grow and Coil? -- 3.7.2 Reissner's Membrane and the Stria Vascularis: The Importance of Nonsensory Cochlear Development -- 3.7.3 Postmitotic Maturation of the Organ of Corti -- Acknowledgements -- References -- 4 Mechanical Transduction Processes in the Hair Cell -- Abstract -- 4.1 Hair Bundle Transduction and Adaptation -- 4.1.1 Structure, Mechanics, and Cohesion of the Hair Bundle -- 4.1.2 Measuring Mechanotransduction In Vivo and In Vitro -- 4.1.3 Generation of the Receptor Current. , 4.1.4 Fast and Slow Adaptation -- 4.1.4.1 Slow Adaptation -- 4.1.4.2 Fast Adaptation -- 4.1.4.3 Mechanical Correlates of Adaptation -- 4.1.4.4 Mammalian Hair Cells -- 4.1.5 Generation of the Receptor Potential -- 4.2 Molecular Components of the Hair Bundle Transduction Apparatus -- 4.2.1 Tip Links -- 4.2.2 Tip-Link Upper End -- 4.2.3 Tip-Link Lower End -- 4.2.4 Coupling of the Hair Bundle -- 4.2.5 Transduction Channel -- 4.3 Hair Bundle Mechanics and Motility -- 4.3.1 Nonlinear Mechanics and Channel Gating -- 4.3.2 Adaptation and Active Motility -- 4.3.3 Mechanical Loading -- 4.3.4 Response to Step Deflections -- 4.3.5 Amplification of Periodic Stimuli -- 4.3.6 The Energy for Amplification -- 4.3.7 Stimulation with Two Frequencies -- 4.3.8 Calcium Effects on Bundle Movement -- 4.3.9 Electrically Driven Motion -- 4.4 Electromotility of Mammalian Outer Hair Cells and Its Role in Amplification -- 4.4.1 Active Hair Bundle Motility in the Cochlea -- 4.4.2 Modeling Motile Forces in the Cochlea -- 4.4.3 The RC Time-Constant Problem and Interaction Between Active Hair Bundle Motility and Somatic Electromotility -- 4.5 Unresolved Problems -- 4.5.1 The Upper Frequency Limit of Hearing -- 4.5.2 The Nature of the Transduction Complex -- 4.5.3 Fast Adaptation and the Nature of Active Hair Bundle Motility -- 4.5.4 Somatic Electromotility -- 4.5.5 The Origin of Cochlear Amplification -- Compliance with Ethics Requirements -- References -- 5 Prestin: Molecular Mechanisms Underlying Outer Hair Cell Electromotility -- Abstract -- 5.1 Introduction -- 5.2 Known Biophysical Properties of Prestin -- 5.2.1 The OHC Sensor/Motor: Preprestin -- 5.2.2 Enter Prestin -- 5.2.3 Importance of Prestin for Cochlear Amplification -- 5.2.4 How Does Prestin Sense Voltage? -- 5.2.5 How Many States/Transitions Does Prestin Have? -- 5.3 Structure and Function of Prestin. , 5.3.1 Molecular and Functional Features of Prestin -- 5.3.2 Molecular Structure of Prestin -- 5.3.3 Oligomerization -- 5.3.4 Anion Binding Site -- 5.3.5 Electromotile Molecular Transitions -- 5.4 Interaction of Prestin with Its Cellular Environment -- 5.4.1 Localization of Prestin Along the Basolateral Wall -- 5.4.2 Prestin's Interactome -- 5.4.2.1 Vesicle-Associated Membrane Protein -- 5.4.2.2 Cystic Fibrosis Transmembrane Conductance Regulator -- 5.4.2.3 Calmodulin -- 5.4.2.4 Microtubule-Associated Proteins -- 5.4.2.5 Spectrin and Spectrin-Interacting Proteins -- 5.4.2.6 Calcium/Calmodulin-Dependent Serine Protein Kinase -- 5.4.3 Prestin in the Membrane Environment -- 5.4.3.1 Prestin as a Mechanosensitive Protein -- 5.4.3.2 Prestin as a Confined Protein -- 5.5 Conclusions and Open Questions -- Compliance with Ethics Requirements -- References -- 6 Electromechanical Feedback Mechanisms and Power Transfer in the Mammalian Cochlea -- Abstract -- 6.1 Introduction -- 6.2 Cochlear Fluid Pressure and Amplification -- 6.2.1 Cochlear Pressure Waves: Classical Hydrodynamics -- 6.2.2 Measurement of Cochlear Fluid Pressure -- 6.2.3 Electromechanical Basis of Responses to Electrical Stimulation -- 6.2.4 Pressure Responses to Acoustic or Electrical Stimulation -- 6.2.5 Estimation of Velocity Responses from Pressure Responses -- 6.2.6 Active Mechanisms and Cochlear Amplification -- 6.2.7 Evidence For and Against Cochlear Power Amplification from Single-Parameter Measurements -- 6.2.8 Evidence for Cochlear Power Amplification from Multiparameter Measurements -- 6.3 Tectorial Membrane Mechanics and Cochlear Amplification -- 6.3.1 Local Interactions of the Tectorial Membrane with Hair Bundles -- 6.3.1.1 Quasi-Static Point Impedance Measurements -- 6.3.1.2 Dynamic Point Impedance Measurements -- 6.3.1.3 Electrokinetic Properties of the Tectorial Membrane. , 6.3.1.4 Implications of Local Tectorial Membrane Interactions with Hair Bundles -- 6.3.2 Radial Modes of Tectorial Membrane Interactions with the Hair Bundles -- 6.3.2.1 Effect of Electromechanical Force from Outer Hair Cells on Tectorial Membrane Motion -- 6.3.2.2 Radial Modes of Tectorial Membrane Motion in Mutants -- 6.3.2.3 Implications of Radial Modes of Tectorial Membrane Interactions with the Hair Bundles -- 6.3.3 Longitudinal (Wave) Modes of Tectorial Membrane Motion -- 6.3.3.1 Traveling-Wave Measurements of Isolated Tectorial Membrane -- 6.3.3.2 Traveling-Wave Measurements of Isolated Tectorial Membrane in Tectb−/− Mutants -- 6.3.3.3 Traveling-Wave Measurements of Tectorial Membrane In Vivo -- 6.3.3.4 Implications of Longitudinal Modes of Tectorial Membrane Motion -- 6.4 Summary -- Compliance with Ethics Requirements -- References -- 7 Hair Cells and Their Synapses -- Abstract -- 7.1 Introduction -- 7.1.1 Questions to Be Addressed -- 7.2 Anatomy -- 7.3 Afferent Fiber Properties -- 7.3.1 Spontaneous Activity -- 7.3.2 Stimulus-Driven Activity -- 7.4 Presynaptic Vesicle Release -- 7.4.1 Vesicle Pools -- 7.4.2 Membrane Capacitance Measurements -- 7.4.3 Multiple Release Components -- 7.5 Calcium Homeostasis -- 7.5.1 Calcium-Channel Molecular Components -- 7.5.2 Calcium Clearance -- 7.5.3 Nanodomain Versus Microdomain -- 7.5.4 Calcium-Induced Calcium Release -- 7.6 Postsynaptic Measurements -- 7.6.1 Multiquantal Release -- 7.6.2 Alternate Interpretations from Multiquantal Release -- 7.6.3 Functional Relevance of Multiquantal Release -- 7.7 Synaptic Proteins -- 7.7.1 Ribbon Proteins -- 7.7.2 Ribbon Function -- 7.7.3 Synaptic Density Proteins -- 7.7.4 Otoferlin -- 7.7.4.1 Otoferlin Genetics -- 7.7.4.2 Otoferlin in Vesicle Fusion and Trafficking -- 7.7.4.3 Otoferlin and Endocytosis -- 7.8 Summary -- Acknowledgements -- References. , 8 Afferent Coding and Efferent Control in the Normal and Impaired Cochlea.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Auditory cortex. ; Auditory perception. ; Electronic books.
    Description / Table of Contents: The first, most focused volume on the topic, this book reviews the principal methodologies for investigating the human auditory cortex, and explores central questions and computational challenges for understanding auditory processing in human auditory cortex.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    Edition: 1st ed.
    ISBN: 9781461423140
    Series Statement: Springer Handbook of Auditory Research Series ; v.43
    DDC: 612.8255
    Language: English
    Note: Intro -- The Human Auditory Cortex -- Series Preface -- Volume Preface -- Contents -- Contributors -- Chapter 1: Introduction: Why Human Auditory Cortex? -- References -- Part I: The Methods -- Chapter 2: Architecture, Connectivity, and Transmitter Receptors of Human Auditory Cortex -- 2.1 Introduction -- 2.2 Historic Concepts and Maps of Human Auditory Cortex -- 2.3 Primary Auditory Area -- 2.3.1 Relationship Between Heschl's Gyrus and Primary Auditory Cortex -- 2.3.2 Architectonic Features of Primary Auditory Cortex -- 2.3.3 Intra-areal Compartments Within the Primary Auditory Area -- 2.4 Nonprimary Auditory Areas on the Supratemporal Plane -- 2.4.1 Cyto- and Myeloarchitecture -- 2.4.2 Putative Functional Specialization of Nonprimary Auditory Areas -- 2.5 Temporal and Parietal Convexities -- 2.6 Intersubject Variability and Probabilistic Mapping -- 2.7 Hemispheric Asymmetries -- 2.8 Connectivity of Auditory Cortex -- 2.9 Summary -- References -- Chapter 3: Invasive Research Methods -- 3.1 Introduction -- 3.2 Brief Historic Overview -- 3.3 Contemporary Research -- 3.3.1 Research Subjects -- 3.3.2 Acute Experiments -- 3.3.3 Chronic Experiments -- 3.3.3.1 Depth Electrodes -- 3.3.3.2 Surface Grid Electrodes -- 3.3.3.3 Anatomical Reconstruction -- 3.3.3.4 Stimulation and Recording -- 3.4 Experimental Paradigms -- 3.4.1 Functional Mapping by Electrophysiological Recording -- 3.4.1.1 Signal Processing -- 3.4.1.2 Coding of Stimulus Acoustic Features -- 3.4.2 Functional Connectivity -- 3.4.3 Electrical Stimulation Functional Mapping -- 3.5 Validity of Invasive Recordings -- 3.6 Summary -- References -- Chapter 4: Recording Event-Related Brain Potentials: Application to Study Auditory Perception -- 4.1 Introduction -- 4.2 Recording of Neuroelectric Brain Activity -- 4.3 Auditory Scene Analysis as the Building Block of Higher Auditory Cognition. , 4.4 Concurrent Sound Segregation -- 4.5 Sequential Sound Segregation -- 4.6 Attention, Prediction, and Auditory Scene Analysis -- 4.7 Concluding Remarks -- References -- Chapter 5: Magnetoencephalography -- 5.1 The Case for Magnetoencephalography Imaging -- 5.2 Sensing the Brain's Magnetic Fields -- 5.3 From Sensing to Imaging -- 5.3.1 Forward Models Describing Brain Activity and Measurements -- 5.3.2 Inverse Models for Reconstructing Brain Activity from Measurements -- 5.3.3 Sources of Noise in MEG -- 5.3.4 Temporal and Spatial Resolution of MEG Imaging -- 5.3.5 From Single-Subject Reconstructions to Group-Level Inference -- 5.4 Auditory Studies Using MEG -- 5.4.1 Transient Auditory Evoked Fields -- 5.4.2 Evoked Responses to Non-speech Acoustic Stimuli -- 5.4.3 Effects of Stimulus Timing and Pattern on Early Response Components -- 5.4.4 Hemispheric Lateralization of Early Auditory Responses -- 5.4.5 Mismatch Negativity Fields -- 5.4.6 Steady-State Evoked Responses -- 5.4.7 Evoked Responses to Speech Syllables -- 5.4.8 Oscillations Induced by Speech Syllables -- 5.4.9 Responses to Vowels -- 5.4.10 Mismatch Negativity to Speech Sounds -- 5.4.11 Modulation of Auditory Cortical Responses During Speaking -- 5.5 Auditory Cortical Plasticity Assessed by MEG -- 5.6 Summary and Conclusions -- References -- Chapter 6: Hemodynamic Imaging: Functional Magnetic Resonance Imaging -- 6.1 Introduction -- 6.2 Functional Magnetic Resonance Imaging -- 6.2.1 Basis of Technique -- 6.2.1.1 The Physiological Basis of the BOLD Signal -- 6.2.1.2 Relationship of the BOLD Signal to Neural Activity -- 6.2.2 Acquisition of Data -- 6.2.3 Spatial Localization and Resolution -- 6.2.4 Temporal Resolution -- 6.2.5 Signal Artifacts -- 6.2.6 Considerations for Auditory fMRI Experiments -- 6.2.6.1 Imaging-Related Acoustic Noise -- 6.2.6.2 Reduction of Imaging-Related Acoustic Noise. , 6.2.6.3 Image Acquisition for Auditory Experiments -- 6.3 Design of Hemodynamic Imaging Experiments -- 6.3.1 Experimental Constraints -- 6.3.2 Experimental Design Principles -- 6.3.3 Experimental Designs -- 6.3.3.1 Designs for Detection: Measuring State-Related Perceptual and Cognitive Activity -- 6.3.3.2 Designs for Detection: Measuring Transient Perceptual and Cognitive Activity -- 6.3.3.3 Designs for Estimation of the Hemodynamic Response -- 6.4 Data Analysis -- 6.4.1 Data Pre-Processing for Removal of Noise and Artifact -- 6.4.2 Transforming Data into a Standard Reference Space -- 6.4.3 General Analysis Procedures -- 6.4.4 Model-Based Analysis -- 6.4.4.1 Basis Functions for Model-Based Analysis -- 6.4.4.2 Assessment of Model-Based Statistical Significance -- 6.4.4.3 Correcting for Multiple Comparisons -- 6.4.4.4 Region of Interest Analysis -- 6.4.5 Data-Driven Analyses -- 6.4.5.1 Approaches for Data Reduction -- 6.4.5.2 Pattern Classification -- 6.4.6 Functional and Effective Connectivity -- 6.5 Summary -- References -- Part II: The Principal Computational Challenges -- Chapter 7: Coding of Basic Acoustical and Perceptual Components of Sound in Human Auditory Cortex -- 7.1 Introduction -- 7.1.1 A Scheme for Parcellating Human Auditory Cortex -- 7.2 Single-Frequency Tones -- 7.2.1 Frequency Coding in Primary Auditory Cortex -- 7.2.2 Frequency Coding in Nonprimary Auditory Cortex -- 7.3 Broadband Signals -- 7.4 Modulation -- 7.4.1 Sustained and Transient Responses to Modulated Signals -- 7.4.2 Sensitivity to Slow-Rate Modulation Within Subdivisions of the Auditory Brain -- 7.4.3 A Common Representation of Modulation Rate? -- 7.5 Sound Level -- 7.5.1 Monotonic Level-Dependent Functions in Human Auditory Cortex -- 7.5.2 Sensitivity to Sound Level Within Subdivisions of the Auditory Brain. , 7.5.3 Searching for a Topographic Representation of Sound Level -- 7.5.4 A Physical or Perceptual Representation of Sound Level? -- 7.6 Pitch -- 7.6.1 Pitch Sensitivity within Subdivisions of the Auditory Brain -- 7.6.2 Pitch Onset -- 7.6.3 Listening to Melodies -- 7.7 Summary -- References -- Chapter 8: Auditory Object Analysis -- 8.1 The Problem -- 8.2 Simultaneous Grouping and Object Segregation -- 8.2.1 Object Features Based on Segregated and Grouped Elements -- 8.3 Sequential Grouping -- 8.3.1 Auditory Streaming -- 8.3.1.1 Basic Psychophysics of Auditory Streaming -- 8.3.1.2 Neural Bases for Streaming -- 8.3.2 Auditory Continuity -- 8.3.2.1 Psychophysics of Auditory Continuity -- 8.3.2.2 Neural Bases for Auditory Continuity -- 8.3.3 Regularity and Deviance in Acoustic Sequences -- 8.4 Concluding Comments: Higher-Level Mechanisms -- References -- Chapter 9: Speech Perception from a Neurophysiological Perspective -- 9.1 Introduction: Terminology and Concepts -- 9.2 Processing Speech as an Acoustic Signal -- 9.2.1 Some Critical Cues -- 9.2.2 Sensitivity of Auditory Cortex to Speech Features -- 9.2.2.1 Sensitivity to Frequency -- 9.2.2.2 Sensitivity to Time -- 9.2.2.3 Sensitivity to Spectrotemporal Modulations -- 9.2.2.4 Sparse Representations in the Auditory Cortex -- 9.3 Cortical Processing of Speech as a Continuous Stream -- 9.3.1 The Discretization Problem -- 9.3.2 Speech Analysis at Multiple Timescales -- 9.3.3 Alignment of Neuronal Excitability with Meaningful Speech Events -- 9.3.4 Multitime-Resolution Processing: Asymmetric Sampling in Time -- 9.4 Large-Scale Neurocognitive Models of Speech Processing -- 9.4.1 Emerging Consensus: Functional Neuroanatomic Models -- 9.4.2 Broadening the Empirical Scope: an Oscillation-Based Functional Model -- 9.4.3 The Role of the Auditory Cortex in Speech Production. , 9.4.4 A Predictive (Bayesian) View on Speech Processing -- 9.5 Summary -- References -- Chapter 10: Cortical Processing of Music -- 10.1 Introduction -- 10.2 Pitch and Rhythm versus Speech: Building Blocks of Musical Processing -- 10.3 Neural Substrates of Basic Aspects of Pitch -- 10.4 Neural Substrates of Melodic Processing -- 10.5 Hemispheric Asymmetries of Auditory Processing -- 10.6 Dorsal-Stream Model of Auditory Processing and Its Relation to Music: Where, How, or Do? -- 10.7 Role of Training and Experience on Auditory Cortical Function and Structure -- 10.7.1 Training Effects on Auditory Cortical Activity -- 10.7.2 Assessing Cortical Function in Musicians and Nonmusicians -- 10.7.3 Effects of Musical Training on Neuroanatomy -- 10.8 Amusia -- 10.9 Summary -- References -- Chapter 11: Multisensory Role of Human Auditory Cortex -- 11.1 Introduction -- 11.2 Nonhuman Neuroanatomy and Neurophysiology -- 11.2.1 Anatomical Circuits for Multisensory Convergence in Low-Level Cortices -- 11.2.2 Physiological Manifestations of Multisensory Convergence in Low-Level Cortices -- 11.2.2.1 Functional Manifestations of Feedforward Convergence -- 11.2.2.2 Functional Manifestations of Associative Convergence -- 11.2.2.3 Functional Manifestations of Extralemniscal Thalamic Inputs -- 11.2.2.4 Signature of Driving versus Modulatory Input -- 11.2.3 Constraints Imposed by Input Timing -- 11.2.3.1 Auditory Response Timing in Macaque Auditory Cortex -- 11.2.3.2 Visual and Somatosensory Response Timing in Auditory Cortex -- 11.2.3.3 Extrapolation from Monkey to Human Latencies -- 11.2.3.4 Implications of Response Timing -- 11.3 Contributions of Auditory Cortex to Multisensory Perception -- 11.3.1 Auditory Cortex Contribution to Tactile and Auditory-Tactile Perception -- 11.3.2 Auditory Cortex Contribution to Visual and Auditory-Visual Perception. , 11.3.2.1 Ventriloquism and Spatial Capture Effects.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Vestibular apparatus. ; Auditory pathways. ; Labyrinth (Ear). ; Ear, Inner--physiology. ; Neurons, Efferent--physiology. ; Auditory Pathways--physiology. ; Vestibulocochlear Nerve--physiology. ; Electronic books.
    Description / Table of Contents: This book focuses on auditory and vestibular efferents, topics linked together by the inner ear connection. Top researchers in the field review the history of the subject and summarize what is known and what still needs to be done.
    Type of Medium: Online Resource
    Pages: 1 online resource (370 pages)
    Edition: 1st ed.
    ISBN: 9781441970701
    Series Statement: Springer Handbook of Auditory Research Series ; v.38
    DDC: 612.85
    Language: English
    Note: Intro -- Auditory and Vestibular Efferents -- Series Preface -- Volume Preface -- Contents -- Contributors -- Chapter 1: Introduction to Efferent Systems -- 1.1 Introduction and Overview -- 1.2 Overview of the Volume -- 1.3 Comparison with Other Sensory Systems -- 1.4 Summary -- References -- Chapter 2: Anatomy of Olivocochlear Neurons -- 2.1 Introduction -- 2.2 OC Neurons in the Brain Stem -- 2.2.1 Distributions of Lateral vs. Medial Olivocochlear Neurons -- 2.2.2 Numbers of Neurons -- 2.2.3 Axonal Characteristics -- 2.3 Peripheral Projections -- 2.3.1 Separate Terminations of LOC and MOC Neurons -- 2.3.2 Terminations of LOC Fibers -- 2.3.3 Terminations of MOC Fibers -- 2.4 Central Branches to the Cochlear and Vestibular Nuclei -- 2.5 Neurochemistry -- 2.6 Ultrastructure of Synaptic Inputs to OC Neurons -- 2.7 Neural Pathway of the Medial Olivocochlear Reflex -- 2.7.1 Direct Reflex Pathway -- 2.7.2 Modulatory Pathways -- 2.8 Summary -- References -- Chapter 3: Physiology of the Medial and Lateral Olivocochlear Systems -- 3.1 Introduction -- 3.2 MOC Effects in the Cochlea: Overview -- 3.2.1 MOC Activation Increases CM -- 3.2.2 MOC Activation Decreases EP and Has Other Related Effects -- 3.3 Classic MOC Fast Effects in a Silent Background -- 3.3.1 Classic MOC Fast Effects on Basilar-Membrane Motion -- 3.3.2 Classic MOC Fast Effects on Otoacoustic Emissions -- 3.3.3 Classic MOC Fast Effects on IHC and AN Responses -- 3.4 Classic MOC Fast Effects in a Noisy Background -- 3.5 Nonclassic MOC Fast Effects in a Silent Background -- 3.5.1 Nonclassic MOC Fast Effects in the Basal Half of the Cochlea -- 3.5.2 Nonclassic MOC Fast Effects in the Apical Half of the Cochlea -- 3.6 MOC Slow Effects -- 3.7 MOC-Fiber Responses to Sound -- 3.8 MOC Acoustic Reflexes -- 3.8.1 Sound-Elicited MOC Effects on AN Fibers. , 3.8.2 Sound-Elicited MOC Effects on Otoacoustic Emissions -- 3.8.2.1 MOC Reflex Tuning -- 3.8.2.2 MOC Reflex Amplitude as a Function of Elicitor Bandwidth -- 3.8.2.3 MOC Reflex Laterality -- 3.8.2.4 MOC Reflex Strength -- 3.8.3 Descending Influences on MOC Acoustic Reflex Properties in Humans -- 3.9 MOC Function in Hearing -- 3.9.1 MOC Activity Changes the Dynamic Range of Hearing and Thereby Increases the Discriminability of Transients in Background Noise -- 3.9.2 MOC Activity Helps to Protect Against Acoustic Trauma -- 3.9.3 Possible Roles of MOC Activity in Attention and Learning -- 3.10 LOC Physiology and Function -- 3.10.1 LOC Effects in the Cochlea -- 3.10.2 LOC Response to Sound -- 3.10.3 LOC Function in Hearing -- 3.11 Summary and Future Directions -- References -- Chapter 4: Pharmacology and Neurochemistry of Olivocochlear Efferents -- 4.1 Introduction -- 4.1.1 Overview of Biochemical and Biophysical Steps in Efferent Activation -- 4.1.2 Historical Perspective of Issues in the Pharmacology of the Olivocochlear Efferents -- 4.2 Cholinergic Medial Efferent Transmission -- 4.2.1 The Medial Efferent Synapse -- 4.2.2 Events at the Efferent Terminal -- 4.2.3 ACh Metabolism -- 4.2.4 Presynaptic Cholinergic Receptors -- 4.2.5 Synaptic Facilitation of Efferent Effects -- 4.2.6 Postsynaptic Cholinergic Receptor -- 4.2.6.1 Overview -- 4.2.6.2 Pharmacology of Medial Efferent Transmission -- 4.2.6.3 Pharmacology of KCa Channels -- 4.2.6.4 Medial Efferents: In Vivo vs. In Vitro Findings -- 4.3 Other Efferent Neurotransmitters -- 4.3.1 Overview -- 4.3.2 Lateral Efferent Origins -- 4.3.3 Acetylcholine -- 4.3.4 Opioid Peptides -- 4.3.5 Calcitonin Gene-Related Peptide (CGRP) -- 4.3.6 GABA -- 4.3.7 Serotonin (5-Hydroxytryptamine) -- 4.3.8 Glycine -- 4.3.9 Dopamine -- 4.4 Summary -- References -- Chapter 5: Cholinergic Inhibition of Hair Cells. , 5.1 Introduction -- 5.2 Historical Background -- 5.3 Cellular Physiology -- 5.3.1 Intracellular Recordings from Hair Cells of the Fish Lateral Line -- 5.3.2 Details of Inhibitory Postsynaptic Potentials and Effect on Receptor Potentials in Turtle Hair Cells -- 5.3.3 Application of ACh to Isolated OHCs -- 5.3.4 Tight-Seal Recordings in the Mammalian Organ of Corti -- 5.3.4.1 Responses to ACh in IHCs and OHCs -- 5.3.4.2 Spontaneous and Evoked Synaptic Currents in IHCs and OHCs -- 5.3.4.3 Cholinergic Inhibition of IHC Action Potentials -- 5.4 Summary of "Two-Channel Hypothesis vs. Second-Messenger Mechanisms" -- 5.5 Determination of Molecular Components -- 5.5.1 Cloning of a9 -- 5.5.2 Cloning of a10 -- 5.6 Genetically Modified Mouse Models -- 5.6.1 a9 and a10 Knockouts -- 5.6.2 a9 and a10 Overexpressors -- 5.6.3 SK2 Knockout Mice -- 5.6.4 a9 Knock-in Mice -- 5.7 Summary and Conclusions -- References -- Chapter 6: The Efferent Vestibular System -- 6.1 Introduction -- 6.2 Afferents and Hair Cells -- 6.2.1 Afferent Discharge Properties -- 6.2.2 Hair Cells and Their Innervation -- 6.2.3 Afferent Morphology and Physiology -- 6.3 Efferents: A Historical Perspective -- 6.4 Neuroanatomical Organization of the EVS -- 6.4.1 Location of Cell Bodies and Their Dendritic Morphology -- 6.4.2 Axonal Pathways to the Periphery -- 6.4.3 Peripheral Branching Patterns -- 6.4.4 Synaptic Ultrastructure of Efferent Terminals -- 6.5 Efferent Neurotransmitters and Receptors -- 6.5.1 Acetylcholine -- 6.5.2 Adenosine 5'-Triphosphate -- 6.5.3 Calcitonin Gene-Related Peptide -- 6.5.4 Opioid Peptides -- 6.5.5 g-Aminobutyric Acid -- 6.5.6 Nitric Oxide -- 6.6 Afferent Responses to Electrical Activation of the EVS -- 6.6.1 Mammals -- 6.6.2 Oyster Toadfish (Opsanus tau) -- 6.6.3 Anurans (Frogs and Toads, Rana and Bufo Species) -- 6.6.4 Red-Eared Turtles (Trachemys scripta elegans). , 6.7 Sites of Efferent Actions: Hair Cells or Afferents -- 6.8 Pharmacology of Efferent Neurotransmission -- 6.8.1 Hair-Cell Inhibition -- 6.8.2 Hair-Cell Excitation -- 6.8.3 Fast Afferent Excitation -- 6.8.4 Slow Afferent Excitation -- 6.9 Efferent Modulation of Afferent Responses to Natural Stimulation -- 6.10 Functional Studies of the EVS -- 6.10.1 Response of EVS Neurons to Natural Stimulation -- 6.10.2 Efferent-Mediated Modulation of Afferent Discharge -- 6.10.3 Possible Functions of the EVS -- 6.11 Summary -- References -- Chapter 7: Development of the Inner Ear Efferent System -- 7.1 Introduction -- 7.2 Central Development -- 7.3 Defects of Efferent Development Revealed Through Targeted Mutations -- 7.4 Neurochemical Development of Auditory Efferents -- 7.4.1 Cholinergic Development -- 7.5 Peripheral Development -- 7.6 Onset of Neurotransmitter-Related Expression Within Cochlea -- 7.7 Acetylcholine Receptors on Hair Cells -- 7.8 Nicotinic Synapse Formation and Maturation of ACh Receptors -- 7.9 Maturation of Efferent Connections and Efferent-Induced Hair Cell Responses -- 7.10 Efferent Connections to Vestibular hair Cells -- 7.11 Conclusion and Outlook -- References -- Chapter 8: Evolution of the Octavolateral Efferent System -- 8.1 Introduction -- 8.2 Anatomical Layout and Neurochemistry of the Efferent System -- 8.2.1 The Origin of Octavolateral Efferents -- 8.2.2 The Plesiomorphic Condition as Seen in Fish -- 8.2.2.1 A Small Number of Efferent Neurons Innervates a Large Number of Both Lateral-Line and Inner-Ear Hair Cells -- 8.2.2.2 Are There Any Subpopulations of Efferents? -- 8.2.2.3 Bilateral Distribution of Efferent Somata and Dendrites -- 8.2.2.4 Efferent Transmitters and Neuropeptides -- 8.2.3 The Most Derived Case: Separate Subsystems of Vestibular and Auditory Efferents of High Complexity in Mammals. , 8.2.4 An Intriguing Case with Many Similarities to Mammals: The Archosaurs (Birds and Crocodilians) -- 8.2.4.1 Separation of Auditory and Vestibular Efferents -- 8.2.4.2 Bilateral Distribution in Archosaurs (Crossed and Uncrossed Efferents) -- 8.2.4.3 Evidence for Subpopulations of Auditory Efferents -- 8.2.4.4 Tonotopic Distribution Along the Avian Basilar Papilla -- 8.2.4.5 Efferent Transmitters and Neuropeptides -- 8.2.5 When and Why Did Vestibular and Auditory Efferents Separate? -- 8.2.5.1 Amphibians -- 8.2.5.2 Turtles -- 8.2.5.3 The Lepidosauromorphs (Tuataras, Lizards, Snakes, and Amphisbaenids) -- 8.3 Function of Efferent Innervation to Hair Cells -- 8.3.1 Transferring the Efferents' Neurochemical Heritage to Hair Cells -- 8.3.1.1 Cholinergic Inhibition -- 8.3.1.2 CGRP -- 8.3.2 Adding New Levels of Sophistication to the Auditory Efferents -- 8.3.2.1 Specializing Together with the Hair Cells: Modulating the Cochlear Amplifier -- 8.3.2.2 Modulating Afferents Instead of Hair Cells: A Mammalian Speciality? -- 8.3.2.3 Branching Out to Nonsensory Cell Types -- 8.3.3 Still an Enigma: Natural Conditions of Efferent Activity -- 8.3.3.1 Protection from Predictable Damage -- 8.3.3.2 Improving Signal Detection -- 8.3.3.3 A Role for Efferents in Auditory Development? -- 8.4 Conclusions and Outlook -- 8.4.1 A Plausible Story of Efferent Evolution -- 8.4.2 Interesting Open Questions -- References -- Chapter 9: Central Descending Auditory Pathways -- 9.1 Introduction -- 9.2 Overview of Central Auditory Structures and the Ascending Pathways -- 9.3 Brief Historical View of the Descending System -- 9.4 Divergent Descending Projections from Specific Auditory Regions -- 9.4.1 Projections from the Superior Olivary Complex -- 9.4.2 Projections from the Nuclei of the Lateral Lemniscus -- 9.4.3 Projections from the IC. , 9.4.4 Projections from the Thalamus and Nearby Areas.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Neurosciences. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (366 pages)
    Edition: 1st ed.
    ISBN: 9783319466613
    Series Statement: Springer Handbook of Auditory Research Series ; v.59
    DDC: 573.89
    Language: English
    Note: Intro -- Acoustical Society of America -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- 1 Vertebrate Diversity in a Sensory System: The Fossil Record of Otic Evolution -- Abstract -- 1.1 General Introduction -- 1.2 General Structure of Inner Ear, Middle Ear, Otic Capsule, Hyomandibula, and Stapes: Terminology -- 1.3 Non-Osteichthyans: Stem Gnathostomes and Chondrichthyans -- 1.4 The Bony Vertebrate Groups: Review of Chapters -- 1.5 Summary -- Compliance with Ethics Requirements -- References -- 2 Actinopterygians: The Ray-Finned Fishes-An Explosion of Diversity -- Abstract -- 2.1 Introduction -- 2.1.1 Bony Fish Skull Anatomy: An Overview -- 2.1.2 The Earliest Bony Fishes -- 2.2 The Fossil Record of Actinopterygian Hearing -- 2.3 Devonian Actinopterygians -- 2.4 "Paleopterygians" -- 2.5 Chondrosteans -- 2.6 Holosteans -- 2.6.1 Parasemionotids -- 2.6.2 Halecomorphs -- 2.6.3 Ginglymodians -- 2.7 Teleosts -- 2.7.1 Stem Teleosts -- 2.7.2 Crown Teleosts I: Innovations in Hearing -- 2.7.3 Crown Teleosts II: The Otolith Fossil Record -- 2.8 Summary -- Compliance with Ethics Requirements -- References -- 3 Sarcopterygians: From Lobe-Finned Fishes to the Tetrapod Stem Group -- Abstract -- 3.1 Introduction to the Sarcopterygians -- 3.2 Actinistians and Onychodonts -- 3.2.1 Actinistians -- 3.2.2 Onychodonts -- 3.3 Dipnomorphs: Dipnoans and Porolepiforms -- 3.3.1 Stem Dipnoans and Porolepiforms -- 3.3.2 Dipnoans -- 3.4 Tetrapodomorph Fishes -- 3.4.1 Introduction to Tetrapodomorphs -- 3.4.2 Osteolepis, Medoevia, and Gogonasus -- 3.4.3 Megalichthyids -- 3.4.4 Tristichopterids -- 3.4.5 Elpistostege, Panderichthys, and Tiktaalik -- 3.5 Summary -- Compliance with Ethics Requirements -- References -- 4 Early Tetrapods: Experimenting with Form and Function -- Abstract -- 4.1 Introduction -- 4.2 Devonian Stem Tetrapods. , 4.2.1 Acanthostega -- 4.2.2 Ichthyostega -- 4.2.3 Ventastega -- 4.3 Carboniferous Stem Tetrapods -- 4.3.1 Whatcheeriids -- 4.3.2 Baphetids -- 4.3.3 Greererpeton -- 4.3.4 Embolomeres -- 4.4 Later Carboniferous and Permian Tetrapods -- 4.4.1 Seymouriamorphs -- 4.4.2 Diadectomorphs -- 4.4.3 "Lepospondyls" -- 4.4.3.1 Recumbirostran "Microsaurs" -- 4.4.3.2 Aïstopods -- 4.5 Earliest Amniotes -- 4.6 Early Developments in the Tetrapod Hearing System -- 4.7 Summary -- Compliance with Ethics Requirements -- References -- 5 Non-Mammalian Synapsids: The Beginning of the Mammal Line -- Abstract -- 5.1 Introduction -- 5.2 The Pelycosaur Grade -- 5.3 Basal Therapsids -- 5.3.1 Biarmosuchia -- 5.3.2 Gorgonopsia -- 5.3.3 Dicynodontia -- 5.3.4 Therocephalia -- 5.4 Non-Mammalian Cynodonts -- 5.4.1 Procynosuchus -- 5.4.2 Thrinaxodon -- 5.4.3 Eucynodontia -- 5.5 Summary -- Compliance with Ethics Requirements -- References -- 6 Evolution of the Middle and Inner Ears of Mammaliaforms: The Approach to Mammals -- Abstract -- 6.1 Introduction -- 6.2 Middle Ear Evolution -- 6.2.1 Middle Ear Evolution in Mammaliaforms -- 6.2.2 Ectotympanic Structure and Function -- 6.2.3 Malleus Structure and Function -- 6.2.4 Structure of the Incus -- 6.2.5 Structure of the Stapes -- 6.2.6 Independent Evolution of Definitive Middle Ear in Monotremes -- 6.2.7 Independent Evolution of Definitive Midde Ear in Theriimorph Mammals -- 6.3 Inner Ear Evolution -- 6.3.1 Inner Ear Bony Housing -- 6.3.2 Cochlear Canals of Mammaliaforms -- 6.3.3 Ancestral Morphotype of Crown Mammalia -- 6.3.4 Vestibular Features of Mammaliaforms -- 6.4 Functional Evolution of Mammaliaform Ears -- 6.4.1 Routes of Sound Conduction to Inner Ear -- 6.4.2 External Ear Pinna -- 6.5 Summary and Remarks -- References -- 7 The Ear of Mammals: From Monotremes to Humans -- Abstract -- 7.1 Introduction -- 7.1.1 Outer Ear. , 7.1.2 Middle Ear -- 7.1.3 Inner Ear -- 7.2 Monotremata and Early Mammalia -- 7.3 Theriimorpha -- 7.3.1 Allotheria (Multituberculata and Gondwanatheria) -- 7.4 Cladotheria -- 7.4.1 Theria (Marsupials and Placentals) -- 7.5 Placentalia -- 7.5.1 Archaic Ungulates ("Condylarthra") -- 7.5.2 Cetacea (Whales and Dolphins) -- 7.5.3 Chiroptera (Bats) -- 7.5.4 Proboscidea (Elephants) -- 7.5.5 Human Evolution -- 7.6 Summary -- Acknowledgements -- References -- 8 Basal Reptilians, Marine Diapsids, and Turtles: The Flowering of Reptile Diversity -- Abstract -- 8.1 Introduction -- 8.2 Basal Reptilians -- 8.2.1 Captorhinidae -- 8.2.2 Parareptilia -- 8.2.2.1 Mesosaurs -- 8.2.2.2 Millerettids -- 8.2.2.3 Ankyramorphs: Bolosaurids, Pareiasauromorphs, and Procolophonoids -- 8.2.3 Basal Diapsida -- 8.3 Marine Diapsid Reptiles -- 8.3.1 Ichthyosauromorpha -- 8.3.2 Thalattosauriformes -- 8.3.3 Sauropterygia: Placodontiformes and Eosauropterygia -- 8.3.4 Testudinata: Chelonians and Their Kin -- 8.4 Early Reptilian Evolutionary History -- 8.5 Summary -- Acknowledgements -- References -- 9 The Lepidosaurian Ear: Variations on a Theme -- Abstract -- 9.1 Introduction -- 9.2 The Fossil Record of Lepidosauria -- 9.3 The Lepidosaurian Ear -- 9.4 Osteological Correlates of Ear Function in Lepidosaurs -- 9.4.1 Middle Ear -- 9.4.2 Inner Ear -- 9.5 The Fossil Record of Ear Evolution in Lepidosauria -- 9.5.1 Overview -- 9.5.2 Stem Lepidosaurs -- 9.5.3 Rhynchocephalia -- 9.5.4 General Squamates -- 9.5.5 Burrowing Squamates -- 9.5.6 Marine Squamates, the Mosasaurs -- 9.5.6.1 Mosasaur Middle Ears -- 9.5.6.2 The Mosasaur Inner Ear -- 9.5.7 Snakes -- 9.5.7.1 Terrestrial Fossil Snakes -- 9.5.7.2 Marine Limbed Snakes -- 9.6 Discussion -- 9.7 Summary -- Acknowledgements -- References -- 10 Archosaurs and Their Kin: The Ruling Reptiles -- Abstract -- 10.1 Introduction. , 10.2 Stem Archosaurs: Prolacerta, Euparkeria, Choristodera, and Phytosauria -- 10.3 Pseudosuchia: The Crocodile Family Tree -- 10.4 Avemetatarsalia: Pterosauria, Dinosauria, and Avialae -- 10.4.1 Pterosauria: The Flying Reptiles -- 10.4.2 Dinosauria: Masters of the Mesozoic -- 10.4.2.1 Ornithischia: The Bird-hipped Dinosaurs -- 10.4.2.2 Saurischia: The Lizard-Hipped Dinosaurs -- Sauropodomorpha -- Theropoda -- 10.4.3 Avialae: Birds and Their Closest Relatives -- 10.5 Morphological Evolution of the Otic Region in Archosauromorpha -- 10.5.1 Ossification of the Otic Capsule and Its Significance -- 10.5.2 The Development of Impedance-Matching Hearing -- 10.5.3 Evolution of the Inner Ear and Its Implications -- 10.5.4 The Importance of Bone Pneumatization -- 10.5.5 Formation of the Opisthotic Loop -- 10.5.6 Flight and the Interpretation of the Floccular Lobe -- 10.5.7 Sound Production and Communication -- 10.5.8 Acquisition of Aquatic Hearing -- 10.5.9 The Crocodylian Braincase -- 10.6 Summary -- Acknowledgements -- References -- 11 Amphibia: A Case of Diversity and Convergence in the Auditory Region -- Abstract -- 11.1 Introduction -- 11.2 Temnospondyls -- 11.2.1 Edopoids -- 11.2.2 Dendrerpetidae and Balanerpeton -- 11.2.3 Dvinosaurians -- 11.2.4 Eryopiforms -- 11.2.5 Stereospondyls -- 11.2.6 Dissorophoids -- 11.3 Lissamphibia: The Modern Amphibians -- 11.3.1 Anura: Frogs -- 11.3.2 Triadobatrachus -- 11.3.3 Caudata: Salamanders and Newts -- 11.3.4 Gymnophiona: Caecilians or Limbless Amphibians -- 11.3.5 Eocaecilia -- 11.3.6 Albanerpetontids -- 11.4 The Evolutionary Sequence of Amphibian Ear Types: Making Sense of a Puzzle -- 11.4.1 The Tetrapod Ear and the Primitive Condition for Lissamphibians -- 11.4.2 The Batrachian Ear -- 11.4.3 How and Why Was the Tympanic System Lost? -- 11.5 Summary -- Compliance with Ethics Requirements -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hearing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (227 pages)
    Edition: 1st ed.
    ISBN: 9783319215303
    Series Statement: Springer Handbook of Auditory Research Series ; v.64
    DDC: 612.85
    Language: English
    Note: Intro -- Dedication -- Acoustical Society of America -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: Auditory System Development: A Tribute to Edwin W Rubel -- 1.1 Contributions to Science -- 1.1.1 Early Career -- 1.1.2 Auditory Brainstem -- 1.1.3 Dendritic Regulation -- 1.1.4 Cochlea Frequency-Place Map -- 1.1.5 Hair Cell Regeneration -- 1.1.6 Prevention of Hearing Loss -- 1.1.7 Scientific Community -- 1.2 Overview of Chapters -- 1.2.1 Development of the Mechanosensory Periphery -- 1.2.2 Auditory Brainstem Development -- 1.2.3 Development of Auditory Perception -- 1.3 Conclusions -- References -- Chapter 2: Development and Regeneration of Sensory Hair Cells -- 2.1 Introduction -- 2.2 Hair Cell Development -- 2.2.1 Sensorineural Development in the Inner Ear -- 2.2.2 Initial Differentiation of Hair Cells -- 2.2.2.1 Atoh1 Is Necessary and Sufficient for Hair Cell Formation -- 2.2.2.2 Regulation of Hair Cell and Supporting Cell Fates Through Notch Signaling -- 2.2.2.3 Onset of Atoh1 Expression -- 2.2.3 Hair Cell Development Beyond Atoh1 -- 2.2.4 Summary of Development -- 2.3 Hair Cell Regeneration -- 2.3.1 Overview -- 2.3.2 Hair Cell Injury, Death, and Repair -- 2.3.3 Hair Cell Regeneration in Nonmammalian Vertebrates -- 2.3.3.1 Hair Cell Progenitors in Nonmammalian Vertebrates: Identity and Behavior -- 2.3.3.2 Morphological and Functional Maturation of Regenerated Hair Cells in Nonmammalian Vertebrates -- 2.3.4 Hair Cell Regeneration in Mammals: The Cochlea -- 2.3.5 Hair Cell Regeneration in Mammals: Vestibular Organs -- 2.3.6 Molecular Control of Hair Cell Regeneration in Nonmammals -- 2.3.6.1 Regulators of Supporting Cell Division in Nonmammals -- 2.3.6.2 Regulators of Hair Cell Differentiation in Nonmammals -- 2.3.6.3 Factors Limiting Hair Cell Regeneration in Mammals. , 2.3.7 Future Considerations for Hair Cell Regeneration -- 2.3.8 Summary -- References -- Chapter 3: The Molecular and Cellular Mechanisms of Zebrafish Lateral Line Development -- 3.1 Introduction -- 3.2 Early Development of the Lateral Line -- 3.2.1 Formation of Lateral Line Placodes -- 3.2.2 Molecular Mechanisms of Lateral Line Placode Formation -- 3.3 Development of the Posterior Lateral Line System -- 3.3.1 Primordia Migration Forms the Zebrafish Lateral Line -- 3.3.2 Organization of the pLLP -- 3.3.3 Progenitor Cell Identity and Maintenance -- 3.3.4 FGF Signaling and Proto-NM Formation -- 3.3.5 Regulation of NM Deposition and Spacing -- 3.3.6 Directional Migration -- 3.3.7 Hair Cell Specification and Differentiation -- 3.4 Mechanosensory Hair Cells of the Lateral Line -- 3.4.1 Development and Physiology -- 3.5 Posterior Lateral Line Innervation -- 3.5.1 Pioneer Axon Extension and Pathfinding -- 3.5.2 Peripheral Topography and Central Somatotopy of the pLL -- 3.5.3 The Unexplored Role of Efferents -- 3.5.4 Innervation of Planar Polarized Hair Cells -- 3.6 Postembryonic Lateral Line Development in the Zebrafish -- 3.7 Summary -- References -- Chapter 4: Glutamate Signaling in the Auditory Brainstem -- 4.1 Introduction to Glutamate Signaling -- 4.2 Synaptic Excitation -- 4.2.1 Presynaptic Release -- 4.2.2 Ionotropic Glutamate Receptors -- 4.2.3 Metabotropic Glutamate Receptors -- 4.2.4 Calcium Signaling -- 4.3 Development of Synaptic Excitation -- 4.3.1 Morphology and Physiology -- 4.3.2 Cotransmission: Excitation Mediated by Inhibitory Neurotransmitters -- 4.4 Activity-Dependent Regulation of Glutamate Signaling -- 4.4.1 Short-Term Synaptic Plasticity -- 4.4.2 Long-Term Synaptic Plasticity -- 4.4.3 Pathophysiology and Glutamate Signaling -- 4.5 Neuromodulation of Glutamate Signaling -- 4.5.1 Homosynaptic Modulation. , 4.5.2 Heterosynaptic Modulation -- 4.6 Summary -- References -- Chapter 5: Development and Function of Inhibitory Circuitry in the Avian Auditory Brainstem -- 5.1 Introduction: The Elegant Circuit -- 5.1.1 The Excitatory Pathways of the ITD Processing Circuit -- 5.1.2 Sources of Inhibition -- 5.2 Embryonic Origins and Development of SON Innervation -- 5.3 Inhibitory Synaptic Physiology: Slow, Depolarizing, and Potent -- 5.3.1 GABAergic Input to NM and NL Is Depolarizing -- 5.3.2 An Unexpected Role for Glycine in the Avian Auditory Brainstem -- 5.3.3 A Role for Phase-Locked Inhibition in Birds? -- 5.4 Binaural Processing in Balance: The SON Circuit from a Systems View -- 5.5 Summary -- References -- Chapter 6: Tuning Neuronal Potassium Channels to the Auditory Environment -- 6.1 Introduction -- 6.2 What Is So Special About Kv3 Potassium Channels? -- 6.3 Brainstem Circuits Underlying Localization of Sounds Have High Levels of Kv3.1 and Kv3.3 Channels -- 6.3.1 Bushy Cells of the Anteroventral Cochlear Nucleus -- 6.3.2 Principal Neurons of the MNTB -- 6.3.3 Other Auditory Brainstem Nuclei -- 6.4 Too Much Kv3.1 Current Produces Errors in Timing -- 6.5 The Properties of Brainstem Neurons Are Plastic -- 6.5.1 Casein Kinase 2 Adjusts the Voltage Dependence of Kv3.1 Current in MNTB Neurons -- 6.5.2 Phosphorylation of Kv3.1 Channels Is Developmentally Regulated -- 6.5.3 Phosphorylation of Kv3.3 Channel Subunits -- 6.6 Long-Term Modulation of Kv3.1 Currents in MNTB Neurons -- 6.6.1 Activity Regulates the Tonotopic Gradient of Kv3.1 Channels -- 6.6.2 Rapid Synthesis of Kv3.1 Channels in Response to Auditory Stimulation Is Regulated by the Fragile X Mental Retardation Protein -- 6.6.3 Regulation of Kv3.1 Channels by Changes in Transcription -- 6.7 Changes in the Tonotopic Gradient of Kv3 Channels Contribute to the Processing of Auditory Information. , 6.8 Unresolved Questions About Channel Modulation in Auditory Neurons -- 6.8.1 Is Channel Modulation Local or Global? -- 6.8.2 Can Accuracy of Transmission Be Altered by Pharmacological Agents? -- 6.9 How Is Modulation of Kv3 Channels Coordinated with Changes in Other Potassium Channels? -- 6.9.1 Kv1 Family Channels -- 6.9.2 Kv2.2 Channels in the Initial Segment -- 6.9.3 Kv11 Channels -- 6.9.4 Sodium-Activated Potassium Channels -- 6.10 Do Changes in Excitability of Brainstem Neurons Contribute to Auditory Learning? -- 6.11 Summary -- References -- Chapter 7: Ontogeny of Human Auditory System Function -- 7.1 Introduction -- 7.2 Development of Conductive Elements -- 7.2.1 External Ear -- 7.2.2 Middle Ear -- 7.2.3 Influences on Auditory Function -- 7.2.3.1 Absolute Sensitivity -- 7.2.3.2 Spatial Hearing -- 7.3 Differentiation of the Human Inner Ear -- 7.3.1 Morphology -- 7.3.2 Physiology -- 7.3.2.1 Otoacoustic Emissions -- 7.3.2.2 Evoked Neural Responses -- 7.3.2.3 Behavioral Responses -- 7.3.3 Development of the Place Principle -- 7.4 Development of Neural Response Properties -- 7.4.1 Frequency Resolution -- 7.4.2 Intensity Representation -- 7.4.2.1 Absolute Sensitivity -- 7.4.2.2 Intensity Discrimination -- 7.4.2.3 Loudness -- 7.4.3 Timbre and Spectral Shape Discrimination -- 7.4.4 Temporal Processing -- 7.4.4.1 Temporal Resolution -- 7.4.4.2 Pitch -- 7.4.4.3 Binaural Hearing -- 7.4.5 Auditory Scene Analysis -- 7.5 Afferent Influences on Auditory System Ontogeny -- 7.5.1 Effects of Exposure to Speech -- 7.5.2 Congenital Hearing Loss Treated with Cochlear Implants -- 7.6 Summary -- References -- Chapter 8: Early Experience and Auditory Development in Songbirds -- 8.1 Introduction -- 8.2 Song Behavior -- 8.3 Basic Hearing -- 8.4 Early Song Experience and Behavior -- 8.4.1 Song Production -- 8.4.2 Song Perception. , 8.5 Early Experience and Auditory Coding -- 8.5.1 Auditory Midbrain -- 8.5.1.1 Auditory Midbrain Function -- 8.5.1.2 Early Experience and Auditory Midbrain Function -- 8.5.2 Auditory Cortex -- 8.5.2.1 Auditory Cortex Organization -- 8.5.2.2 Primary Auditory Cortex -- 8.5.2.3 Early Experience and Primary Auditory Cortex Function -- 8.5.2.4 Secondary Cortex -- 8.5.2.5 Early Experience and Secondary Cortex Function -- 8.6 Summary -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Hearing -- Physiological aspects. ; Electronic books.
    Description / Table of Contents: This book brings together some of the most exciting comparative research on hearing and shows how this work has profoundly impacted our understanding of hearing in all vertebrates. It highlights research achieved through the use of non-standard animal species.
    Type of Medium: Online Resource
    Pages: 1 online resource (396 pages)
    Edition: 1st ed.
    ISBN: 9781461490777
    Series Statement: Springer Handbook of Auditory Research Series ; v.49
    DDC: 612.85
    Language: English
    Note: Intro -- Series Preface -- Volume Preface -- Contents -- Contributors -- Unique Contributions from Comparative Auditory Research -- 1 Introduction -- 1.1 What Is Comparative Auditory Research? -- 1.2 What Are the Unique Roles of Comparative Auditory Research? -- 2 The Themes of this Volume -- 2.1 Hair Cells as Transducers and Amplifiers -- 2.2 The Evolution of Hair Cell Polarity -- 2.3 Auditory Oddities: Instructive Exceptions to the Rule -- 2.4 New Insights into the Evolution of Hearing -- 2.5 Neuroethology of Hearing -- 3 Summary -- References -- Transduction and Amplification in the Ear: Insights from Insects -- 1 Introduction: Auditory Transduction and Insects -- 2 The Cellular Basis of Insect Mechanotransduction -- 3 A Minimal Model of Insect (Auditory) Mechanotransduction (I): General Functional Modules -- 4 Predictions from a Minimal Model -- 5 Auditory Transduction in Drosophila melanogaster: Testing and Validating the Model´s Predictions -- 6 Transduction, Adaptation, Amplification: The Universal Tripod of Hearing -- 7 A Minimal Model of Insect Auditory Mechanotransduction (II): Molecules of the Drosophila Ear -- 7.1 Reception and Transmission of Stimuli: NompA -- 7.2 Coupling: TilB, DCX-EMAP, and a Role for Microtubular Dynein Arms in Mechanotransduction -- 7.3 Transduction: NompC, Putative Transducer, and Putative Gating Spring -- 7.4 Signal Processing: Downstream Modifier Channels -- 7.5 Transformation: Para Sodium Channels and Their Auxiliary Subunits -- 8 Auditory Transduction and Acoustic Signaling in Insects: The Role of Mechanotransducers in the Tuning of Species-Specific Co... -- 9 Summary and Outlook -- References -- Roles for Prestin in Harnessing the Basilar Membrane to the Organ of Corti -- 1 Introduction -- 2 Functional Organization of the Cochlear Partition. , 3 Prestin´s Role in Reciprocally Coupling BM Vibrations to the Organ of Corti -- 4 Evolution of Prestin -- 4.1 The Electromechanical Process Evolved from the Ancestral Transport Mechanism -- 4.2 The Evolutionary Changes Resulted in Prestin Providing Force but Not Displacement -- 5 Prestin and Auditory Frequency Range -- 5.1 Prestin Charge Density, Distribution, and Force Production by OHCs Does Not Differ from Cochlear Base to Apex -- 5.2 The Molecular Sequence of the Prestin Electromotility Motor Does Not Correlate with Low- and High-Frequency Hearing -- 6 Isotonic versus Isometric Force Generation by OHCs and Morphological Specializations in the Cochlea of High- and Low-Frequen... -- 6.1 Mechanical Influence of Deiters´ Cells on OHC Electromotility -- 6.2 Organ of Corti of Echolocating Bats -- 6.3 Organ of Corti of the Blind Mole Rat -- 7 Cochlear Efferents and the Prestin Motor -- 7.1 The ``Fast´´Effect -- 7.2 The ``Slow´´Effect -- 8 Summary -- References -- Origin and Development of Hair Cell Orientation in the Inner Ear -- 1 Introduction -- 2 Hair Cell Polarity and Hair Cell Orientation Are Specified in Three Steps -- 3 An Overview of Hair Cell Orientation Patterns in Different Inner Ear Epithelia -- 3.1 Hair Cell Orientation Patterns in Vestibular Organs -- 3.2 Hair Cell Orientation in Dedicated Auditory Epithelia -- 4 Ontogenetic and Phylogenetic Origin of Hair Cell Orientation Patterns -- 4.1 Ontogenetic Differentiation of Sensory Epithelia -- 4.2 Subdivision and Segregation of Sensory Epithelia-a Link to Evolutionary Pathways -- 5 Control of PCP-Potential Molecular Mechanisms -- 5.1 Lessons from Insects -- 5.2 PCP Proteins -- 5.3 Propagation of Polarity from Cell to Cell -- 5.4 Morphogen Gradients as Potential ``Global Polarity´´ Cues -- 5.5 A Model for the Control of PCP in Auditory Epithelia. , 5.6 Intercellular PCP Protein Interaction in Sensory Epithelia of the Inner Ear -- 6 Robustness of PCP Control -- 6.1 The ``Two-Opposing Wnt Gradient´´ Model -- 6.2 Advantage of Two Different Wnt Morphogens Acting on PCP from Either Side -- 6.3 A Potential Second PCP Signaling Center Between IHCs and OHCs in Mammals -- 7 Challenges to PCP Concepts-Inner Ear Maculae and Hair Cell Reorientation in Birds -- 7.1 Inner Ear Maculae -- 7.2 Avian Basilar Papilla-Hair Cell Reorientation -- 8 Summary and Outlook -- References -- The Remarkable Ears of Geckos and Pygopods -- 1 An Introduction to Geckos -- 2 A Brief Introduction to Lizard Basilar Papillae -- 3 The Unique Reverse Tonotopicity of the Gecko Basilar Papilla -- 3.1 The Morphological Segments of the Gecko Basilar Papilla -- 3.2 Tonotopic Organization of the Gecko Basilar Papilla -- 3.3 How Did Geckos End Up with a Reversed Tonotopicity? -- 4 Hair Cells without Innervation -- 4.1 Preaxial Hair Cells Are Not Innervated -- 4.2 Possible Functions of Pre- and Postaxial Papillar Areas -- 5 Pygopod Geckos Specialize in High-Frequency Vocalizations and Matching Hearing -- 5.1 Natural History of Pygopod Geckos -- 5.2 The High-Frequency Sensitivity of the Pygopod Genus Delma -- 5.3 Mechanisms of High-Frequency Hearing in Delma -- 5.4 Matched Vocalizations in Pygopods? -- 6 Summary and Outlook -- References -- Ultrasound Detection in Fishes and Frogs: Discovery and Mechanisms -- 1 Introduction -- 2 US Detection in Fish -- 2.1 Historical Overview of US Detection in Fish -- 2.2 Why Detect US? -- 2.3 On the Mechanism of US Detection in Alosinae -- 2.3.1 The Fish Lateral Line -- 2.3.2 The Fish Inner Ear -- 2.3.3 The Ear of Clupeids -- 2.3.4 The Utricle as the US Detector -- 2.3.5 The Lateral Line as the US Detector -- 2.4 The Evolution of US Detection -- 3 Ultrasonic Communication in Frogs. , 3.1 Historical Overview of the Discovery of Ultra-high-Frequency Sensitivity of Frogs -- 3.2 Evolutionary and Environmental Constraints and Selection Pressures on Ultrasonic Signaling -- 3.3 Case Studies -- 3.3.1 Odorrana tormota (formerly Rana tormota and Amolops tormotus) -- 3.3.2 Odorrana graminea (formerly Odorrana livida) -- 3.3.3 Huia cavitympanum -- 3.4 Mechanism of US Detection in Frogs-Still Unknown -- 4 Summary and Outlook: Comparative Insights from the Study of High-Frequency Hearing in Fishes and Frogs -- References -- The Malleable Middle Ear: An Underappreciated Player in the Evolution of Hearing in Vertebrates -- 1 Introduction -- 2 The Functional Anatomy of Middle Ears -- 2.1 Area Ratio of the Eardrum -- 2.2 Lever Ratio -- 2.3 Curved Membrane Lever -- 3 The Middle Ear and Nontympanic Hearing -- 4 Evolutionary History of the Middle Ear Apparatus -- 5 Ontogeny of the Middle Ear Apparatus -- 6 The Middle Ear and Underwater Hearing -- 7 Ultrasonic Hearing -- 8 Hearing Underground -- 9 Directional Hearing -- 10 Reduction of the Middle Ear -- 11 Summary -- References -- Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears -- 1 Introduction -- 1.1 Basal Patterns Among the Tetrapods -- 1.2 Amphibians -- 1.3 Sauropsids or Reptilia -- 2 Anurans -- 2.1 The Anuran Auditory Pathway -- 2.2 Processing of Directional Information -- 2.3 Processing of Communication Sounds -- 3 Lizards -- 3.1 Ascending Auditory Pathways -- 3.1.1 First-Order Nuclei and the Nucleus Laminaris -- 3.1.2 Midbrain -- 3.2 Localization and Coupled Ears -- 4 Snakes -- 4.1 Ascending Auditory Pathways -- 5 Turtles and Tortoises (Testudines) -- 5.1 Ascending Auditory Pathways -- 5.1.1 First-Order Nuclei and the Nucleus Laminaris -- 5.1.2 Midbrain -- 5.2 Localization and Specialization -- 6 Crocodilians -- 6.1 Ascending Auditory Pathways. , 6.2 Localization -- 7 Birds -- 7.1 Ascending Auditory Pathways -- 7.2 Localization -- 8 Summary and Conclusions -- References -- Modern Imaging Techniques as a Window to Prehistoric Auditory Worlds -- 1 Introduction -- 2 Slicing the Rock: Computer Tomographic Techniques and the ``Virtual Ear´´ -- 3 Ear Morphology in Fossil Vertebrates -- 3.1 Nontetrapod Vertebrates -- 3.2 Nonamniote Tetrapods -- 3.3 Amniota -- 3.3.1 Sauropsid Amniotes -- 3.3.2 Synapsid Amniotes -- Ear Structures in Premammalian Synapsids -- Ear Structures in Mesozoic Mammaliaforms -- 4 Conclusions and Outlook -- References -- Emu and Kiwi: The Ear and Hearing in Paleognathous Birds -- 1 Introduction -- 2 The Phylogeny of Paleognathous Birds -- 3 Auditory Neuroethology of Paleognathous Birds -- 3.1 The Large Ratites Have Very Low-Frequency Calls -- 3.2 Tinamous and Kiwi Vocalize at Higher Frequencies -- 3.3 What Is the Ancestral Condition? -- 4 The Basilar Papilla and Its Innervation in Emu and Kiwi -- 4.1 Ancestral Features Suggested by Paleognathous Birds -- 4.1.1 An Early Stage of Functional Hair Cell Differentiation -- Hair Cell Shape Is Heavily Biased by Frequency and Thus Not a Good Indicator of THC-SHC Differentiation -- Loss of Afferent Innervation Probably Happened Early in the Process of THC-SHC Differentiation -- Full Differentiation of Efferent Subpopulations Probably Followed Later -- Differentiation of Hair Cell Physiology Remains Open -- 4.1.2 The Unique Hair-Bundle Orientation Pattern of Birds Is an Ancestral Feature -- 4.1.3 A High Density of Hair Cells? -- 4.2 Species-Specific Features Related to Different Frequency Emphases -- 4.2.1 Hair Bundle Morphology as an Indicator of Frequency Specializations -- Emu, and Probably Rhea, Overrepresent Low Frequencies -- Kiwi Are Predicted to Overrepresent High Frequencies. , 4.2.2 Afferent Innervation Density as an Indicator of Frequency Emphasis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Auditory pathways -- Research. ; Electronic books.
    Description / Table of Contents: This book celebrates the last two decades of the Springer Handbook in Auditory Research. It looks back on the progress made in the hearing sciences as well as major questions for the future. Includes over 30 contributions from the leading experts in the field.
    Type of Medium: Online Resource
    Pages: 1 online resource (668 pages)
    Edition: 1st ed.
    ISBN: 9781461491026
    Series Statement: Springer Handbook of Auditory Research Series ; v.50
    DDC: 612.85072
    Language: English
    Note: Intro -- Series Preface -- Preface 1992 -- Contents -- Contributors -- Chapter 1: A Brief History of SHAR -- 1.1 SHAR Background -- 1.2 Volume 50 -- 1.3 A Brief Overview of SHAR -- 1.4 Our History -- 1.5 Some SHAR Statistics -- 1.6 Working with Springer -- 1.7 The Future -- 1.8 Dedication -- Chapter 2: Structures, Mechanisms, and Energetics in Temporal Processing -- 2.1 Introduction -- 2.2 The Cochlea -- 2.2.1 Pre-1992 Active Hearing and Its Battery -- 2.2.2 A Twenty-Year Perspective as Viewed from the OHC -- 2.2.2.1 Cochlear Amplification for High-Frequency Hearing and Temporal Processing -- 2.2.2.2 The Membrane-Based Lateral Wall Motor -- 2.2.2.3 Full Expression of OHC Electromotility Requires Prestin and Small Intracellular Anions -- 2.2.2.4 Membrane Material Properties Matter -- 2.2.2.5 Turgor Pressure and Membrane Poration -- 2.2.2.6 OHC Stereocilia Bundle and Cochlear Amplification -- 2.3 Central Processing Mechanisms -- 2.3.1 Pre-1992-Establishing the Temporal Limits of Central Processing -- 2.3.2 A 20-Year Perspective as Viewed from the Cochlear Nucleus -- 2.3.2.1 Precision in the Auditory Nerve -- 2.3.2.2 Presynaptic Mechanisms in the Cochlear Nucleus -- 2.3.2.3 Postsynaptic Mechanisms in Cochlear Nucleus Bushy Cells -- 2.3.2.4 Postsynaptic Mechanisms in the MSO -- 2.3.2.5 General Roles for Low-Voltage-Activated K + Channels in the Auditory Brain Stem -- 2.3.2.6 Other Exceptional Timing Functions in Auditory Pathways -- 2.3.2.7 The Metabolic Costs of Mechanisms Enabling High Temporal Precision -- 2.4 Synthesis and Summary -- 2.5 Future Directions -- 2.5.1 Stereocilia -- 2.5.2 OHC Soma -- 2.5.3 IHC -- 2.5.4 Auditory Nerve -- 2.5.5 Bushy Cells -- References -- Chapter 3: Human Auditory Cortex: In Search of the Flying Dutchman -- 3.1 Introduction: Beginnings -- 3.2 Tools of the Trade -- 3.3 Enter the Modern Era -- 3.4 Been There, Done That. , 3.5 Convergence -- 3.6 Transitioning -- 3.7 End Game -- 3.8 Looking Ahead -- 3.9 The Last Word -- References -- Chapter 4: From Cajal to the Connectome: Building a Neuroanatomical Framework for Understanding the Auditory System -- 4.1 Neuroanatomy by Any Other Name… -- 4.2 Neuroanatomy of the Auditory System -- 4.2.1 Some Beginnings -- 4.2.2 The Knowledge Base Grows Apace -- 4.2.3 The Future Is Here -- 4.3 Very Large Databases -- 4.3.1 Finding Better Ways to Share Neuroanatomical Findings -- 4.3.1.1 The Frustration -- 4.3.1.2 A Solution: "Microscopy" Online -- 4.3.1.3 Not So Fast! (A Brief Digression) -- 4.4 The Central Nervous System: Now Appearing in 3-D! -- 4.4.1 An Exemplary Model -- 4.4.2 Auditory Nuclei in the Gerbil -- 4.5 Online Databases Will Repay the Efforts Involved to Build Them -- 4.5.1 Ways Are Needed to Facilitate Localization of Physiological Recording Sites -- 4.5.2 Community Organization -- 4.6 In Conclusion -- References -- Chapter 5: Recording from Hair Cells -- 5.1 Introduction -- 5.1.1 The Seventies and Eighties -- 5.1.2 The Nineties and Oughts -- 5.2 Mechanoelectrical Transduction -- 5.2.1 Adaptation Is Amplification -- 5.2.2 Transduction Channels: How, Where, What? -- 5.3 Receptor Potentials Are Unexpectedly Diverse -- 5.4 Hair Cell-to-Afferent Transmission Has Surprising Properties -- 5.5 Concluding Remarks -- References -- Chapter 6: Three Decades of Tinnitus-Related Research -- 6.1 Introduction -- 6.2 Before SHAR -- 6.3 After SHAR, Volume 1 -- 6.4 The Past Decade: Mechanisms for Tinnitus Without Hearing Loss -- 6.5 Perspectives: Typology of Tinnitus and Use-Dependent Plasticity -- 6.5.1 Noise-Induced, Hearing-Loss-Related Tinnitus -- 6.5.2 Somatic-Induced Tinnitus Without Hearing Loss -- 6.5.3 Tinnitus Without Hearing Loss -- 6.5.4 Stress-Related Tinnitus -- 6.5.5 Tinnitus and Depression. , 6.6 Tinnitus as a Neural Network Problem -- References -- Chapter 7: The Sense of Hearing in Fishes -- 7.1 The Early Years -- 7.2 Princeton and Hawaii -- 7.3 To Loyola University Chicago -- 7.3.1 Research Program -- 7.3.1.1 Time and Frequency Domain Processing -- 7.3.1.2 Spike Rate Suppression -- 7.3.1.3 Ripple Noise Processing -- 7.3.1.4 Stimulus Generalization -- 7.3.2 Auditory Scene Analysis and What Fish Listen to -- 7.3.3 Conclusions -- References -- Chapter 8: A Quarter-Century's Perspective on a Psychoacoustical Approach to Loudness -- 8.1 Introduction -- 8.2 Definitions, Approaches, and the Importance of Terminology -- 8.3 The Complex Nature of Sound Perception -- 8.4 Approaches to Measuring Loudness -- 8.5 Loudness Work at Northeastern University -- 8.5.1 Investigations of Individual Differences in Loudness Functions Among Normal Listeners and Listeners with Different Types of Hearing Losses -- 8.5.2 Investigations and Models of the Relationship Between Temporal and Spectral Integration of Loudness and the Loudness Function -- 8.5.3 Investigations of How Context Affects Loudness -- 8.5.4 Loudness in the Laboratory and in Ecologically Valid Environments -- 8.6 Looking Toward the Future -- References -- Chapter 9: Nonsyndromic Deafness: It Ain't Necessarily So -- 9.1 Introduction -- 9.2 Nonsyndromic Deafness -- 9.3 Rhetoric and Reality -- 9.3.1 X-Linked Nonsyndromic Deafness DFN1 Is Deafness-Dystonia-Optic Neuropathy Syndrome -- 9.3.2 Nonsyndromic Deafness DFNB82 Is Chudley-McCullough Syndrome -- 9.3.3 Perrault Syndrome Not Nonsyndromic Deafness (DFNB81) -- 9.4 Allelic Mutations Can Cause Nonsyndromic or Syndromic Deafness -- 9.5 Summary -- References. , Chapter 10: Evolving Mechanosensory Hair Cells to Hearing Organs by Altering Genes and Their Expression: The Molecular and Cellular Basis of Inner Ear and Auditory Organ Evolution and Development -- 10.1 Introduction -- 10.2 From Single Cells to Organs: The Evolution of Hair Cells -- 10.3 From Hair Cells to Ears, Lateral Line Neuromasts, and Vitalli's Organ -- 10.4 From Vestibular Ears to Tetrapod Hearing Organs: Toward the Molecular Basis of Organ of Corti Evolution -- 10.5 Summary -- References -- Chapter 11: The Implications of Discharge Regularity: My Forty-Year Peek into the Vestibular System -- 11.1 Background -- 11.2 My Introduction to the Vestibular System -- 11.3 Discharge Characteristics of Vestibular Nerve Fibers -- 11.3.1 Directional Properties -- 11.3.2 Resting Discharge -- 11.3.3 Response Dynamics -- 11.3.4 Response Diversity and Discharge Regularity -- 11.4 Discharge Regularity and Galvanic Sensitivity -- 11.5 Discharge Regularity and Innervation Patterns -- 11.6 Discharge Regularity and Depolarization Sensitivity -- 11.7 Discharge Regularity and Information Transmission -- 11.8 A Case History: SCCs Can Respond to Linear Forces -- 11.9 Current and Future Directions -- References -- Chapter 12: Aging, Hearing Loss, and Speech Recognition: Stop Shouting, I Can't Understand You -- 12.1 Introduction -- 12.2 Historical Perspective -- 12.2.1 Epidemiology -- 12.2.2 Models of Presbycusis -- 12.2.3 Speech Understanding Performance -- 12.3 Key Findings in Recent Years -- 12.3.1 Epidemiology -- 12.3.2 Models of Presbycusis -- 12.3.3 Factors Contributing to Speech Understanding Problems -- 12.3.4 Training to Improve Speech Understanding -- 12.4 Current and Future Directions -- 12.4.1 Demographics -- 12.4.2 Speech Recognition Performance for Real-World Degraded Signals -- 12.4.3 Auditory-Visual Speech Perception -- 12.4.4 Cognitive Load. , 12.4.5 New Directions for Hearing Aid Signal Processing -- 12.4.6 New Models of Adaptation and Training -- 12.5 Summary -- References -- Chapter 13: Cochlear Mechanics, Otoacoustic Emissions, and Medial Olivocochlear Efferents: Twenty Years of Advances and Controversies Along with Areas Ripe for New Work -- 13.1 Introduction -- 13.2 Cochlear Mechanics -- 13.2.1 Active Mechanisms and "Cochlear Amplification" -- 13.2.2 What Is the Motor for Mammalian Cochlear Amplification? -- 13.2.3 Cochlear Macromechanics: The Apex Is Different from the Base -- 13.2.4 Cochlear Micromechanics -- 13.2.5 The Mechanical Drive to IHC Stereocilia -- 13.2.6 The Mechanisms by Which MOC Efferents Change Cochlear Mechanics -- 13.3 Otoacoustic Emissions -- 13.3.1 Understanding the Generation of OAEs -- 13.3.2 Using OAEs to Reveal Cochlear Properties -- 13.4 Measuring MOC Effects Using Changes in OAEs -- 13.5 Medial Olivocochlear Efferent Function -- 13.5.1 MOC Effects in Humans -- 13.5.2 The Role of MOC Efferents in Hearing -- 13.5.2.1 MOC Activity Makes It Easier to Hear Signals in Noise -- 13.5.2.2 MOC Activity and Selective Attention -- 13.5.2.3 MOC Activity Reduces Acoustic Trauma -- 13.6 Final Thoughts -- References -- Chapter 14: Examining Fish in the Sea: A European Perspective on Fish Hearing Experiments -- 14.1 Introduction -- 14.2 Earlier State of Knowledge -- 14.3 Moving into the Sea: The First Steps -- 14.4 The Acoustic Properties of the Swim Bladder -- 14.5 The Salmon and Its Kind -- 14.6 Masking -- 14.7 Directional Hearing -- 14.8 Current State of Knowledge -- References -- Chapter 15: The Behavioral Study of Mammalian Hearing -- 15.1 Introduction -- 15.2 The Evolution of Animal Psychophysics -- 15.2.1 The Early Years -- 15.2.2 The Past 20 Years -- 15.3 Comparative Mammalian Hearing -- 15.3.1 The Early Years -- 15.3.2 The Past 20 Years. , 15.3.2.1 High-Frequency Hearing.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hearing--Physiological aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (219 pages)
    Edition: 1st ed.
    ISBN: 9783319265971
    Series Statement: Springer Handbook of Auditory Research Series ; v.57
    DDC: 573.89374
    Language: English
    Note: Intro -- Dedication -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: Hearing and Hormones: Paying Homage to the Comparative Approach -- 1.1 Introduction -- 1.2 Turning Points in Hormonal Investigations: 1970s and 1980s -- 1.3 Convergence of Neuroethology and Behavioral Neuroendocrinology -- 1.4 Hearing and Hormones: A Phylogenetic Perspective -- 1.4.1 Hearing and Hormones in Teleost Fishes -- 1.4.2 Hearing and Hormones in Amphibians -- 1.4.3 Hearing and Hormones in Songbirds -- 1.4.4 Hearing and Hormones in Mammals -- 1.4.4.1 Non-Humans -- 1.4.4.2 Humans -- 1.5 Concluding Comments -- References -- Chapter 2: Hormone-Dependent Plasticity of Auditory Systems in Fishes -- 2.1 Introduction: Why Study Hormones and Hearing in Fish? -- 2.2 Peripheral and Central Auditory Systems -- 2.3 Sound-Producing Fishes -- 2.3.1 Sonic and Vocal Fish -- 2.3.2 Vocal Central Pattern Generator (CPG) -- 2.4 Seasonal Changes in Hearing Sensitivity -- 2.4.1 Auditory Plasticity in Midshipman Fish -- 2.4.2 Hearing, Hormones, and Changing Reproductive State in Cichlids -- 2.5 Peripheral Studies of Hormone Modulation -- 2.5.1 Steroid-Mediated Plasticity of Fish Auditory Systems -- 2.5.1.1 Hormone Targets of the Peripheral Auditory System -- 2.5.1.2 Hormone Targets of the Central Auditory System -- 2.6 Hormone Modulation of Central Auditory Physiology -- 2.7 Catecholamines and Hearing -- 2.7.1 Catecholaminergic Innervation of the Auditory System -- 2.7.2 Catecholaminergic Innervation of the Auditory System Varies with Reproductive State -- 2.8 Summary -- References -- Chapter 3: Effects of Steroid Hormones on Hearing and Communication in Frogs -- 3.1 Introduction -- 3.1.1 Organization of the Frog Auditory System -- 3.1.2 Steroid Receptor Localization Indicates Areas of Hormone Influence -- 3.2 Sex Differences in Hearing. , 3.3 Seasonal Differences in Hearing -- 3.4 Changes in Gonadal Steroid Levels Influence Central Auditory System Responses -- 3.5 Hearing Calls Changes the Hormonal State of Males and Females -- 3.6 Summary and Conclusions -- References -- Chapter 4: Modulation of Peripheral and Central Auditory Processing by Estrogens in Birds -- 4.1 Introduction -- 4.2 The Brain as a Source and Target of Estrogens -- 4.3 Overview of the Avian Auditory System -- 4.3.1 Organization of the Songbird Auditory Pathway -- 4.3.2 Estrogen Receptor and Aromatase Expression in the Songbird Auditory System -- 4.4 Seasonal Plasticity of Auditory Function -- 4.4.1 Seasonal Plasticity of Peripheral Auditory Physiology -- 4.4.2 Seasonal Plasticity of Central Auditory Physiology -- 4.4.3 Seasonal Plasticity of Immediate Early Gene Expression -- 4.5 Acute Estrogenic Effects in the Central Auditory Pathway -- 4.5.1 Microdialysis Approaches -- 4.5.2 Acute Effects of Estrogens on Central Auditory Physiology -- 4.6 Summary -- References -- Chapter 5: Hormones and the Incentive Salience of Bird Song -- 5.1 Introduction -- 5.1.1 Overview of Incentive Salience -- 5.1.2 The Incentive Salience of Bird Song -- 5.2 Hormonal Modulation of Auditory Responses -- 5.2.1 Overview of the Avian Auditory System -- 5.2.2 Auditory Egr-1 Responses Depend on Endocrine State -- 5.2.3 Direct Actions of Estradiol in the Auditory Pathway -- 5.3 Mechanisms of Hormone-Dependent Auditory Responses: Neuromodulatory Regulation -- 5.3.1 A Model of Estrogen-Dependent Neuromodulation -- 5.3.2 Catecholaminergic Activity -- 5.3.3 Serotonergic Activity -- 5.3.4 Oxytocin Activity -- 5.4 Hormone-Dependent Responses in the Reward Pathway -- 5.5 Mechanisms Underlying Selective Responses to Song in Males -- 5.5.1 Testosterone-Dependent Selectivity of Behavioral and Auditory Responses. , 5.5.2 Testosterone-Dependent Changes in Monoaminergic Activity -- 5.5.3 Song-Induced Responses in the Reward Pathway in Males -- 5.6 Future Directions: Incentive Salience and Song Learning -- 5.6.1 Modeling the Development of Social Reward -- 5.6.2 Development of Egr-1 Responses and Neuromodulatory Systems -- 5.7 Summary -- References -- Chapter 6: Hormone-Dependent and Experience-­Dependent Auditory Plasticity for Social Communication -- 6.1 Introduction -- 6.2 Sensory Contexts and Hormones -- 6.2.1 Glucocorticoids -- 6.2.2 Vasopressin and Oxytocin -- 6.2.3 Serotonin -- 6.2.4 Norepinephrine -- 6.2.5 Estrogen -- 6.3 Reproductive Model of Sensory Plasticity -- 6.3.1 Maternal Mouse Communication Model -- 6.3.2 Absence of Long-Term Cortical Map Plasticity in the Maternal Model -- 6.3.3 Long-Term Excitatory Plasticity for Call Categorization and Discrimination -- 6.3.4 Long-Term Inhibitory Plasticity for Call Detection -- 6.3.5 Sensory Plasticity While Becoming Maternal -- 6.4 Relevance to Human Maternal Hearing -- 6.5 Summary -- References -- Chapter 7: Thyroid Hormone and the Mammalian Auditory System -- 7.1 Introduction -- 7.2 Thyroid Hormone -- 7.3 Thyroid Hormone Receptors -- 7.4 Deiodination and Local Control of Cochlear Development -- 7.5 Thyroid Hormone Transporters and Ligand Transfer -- 7.6 Thyroid Hormone Functions in the Auditory System -- 7.7 Thyroid Hormone and the Cochlea -- 7.7.1 Regression of the Greater Epithelial Ridge -- 7.7.2 Remodeling the Organ of Corti -- 7.7.3 Tectorial Membrane -- 7.7.4 Cochlear Function -- 7.8 Thyroid Hormone and the Middle Ear -- 7.9 Thyroid Hormone and Central Auditory Pathways -- 7.10 Hearing Loss in Thyroid Disorders -- 7.10.1 Iodine Deficiency -- 7.10.2 Congenital Hypothyroidism -- 7.10.3 Syndrome of Resistance to Thyroid Hormone -- 7.10.4 Other Genetic Defects in the Response to Thyroid Hormone. , 7.10.5 Other Thyroid Disorders -- 7.10.6 Endocrine-Disrupting Chemicals -- 7.10.7 Pendred Syndrome -- 7.11 Summary -- References -- Chapter 8: Hormone Replacement Therapy and Its Effects on Human Hearing -- 8.1 Introduction -- 8.2 Estrogen Can Modulate Sensory Nervous System Activity -- 8.3 Progesterone Can Be Detrimental to Hearing in Aging Women -- 8.4 Testosterone and Reduced Auditory Sensitivity -- 8.5 Aldosterone Is Linked to Hearing Health -- 8.6 Other Hormone Therapies Can Improve Audition -- 8.7 Summary and Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Neurobiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9781493935277
    Series Statement: Springer Handbook of Auditory Research Series ; v.54
    DDC: 599.4
    Language: English
    Note: Intro -- Dedication -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: A History of the Study of Echolocation -- 1.1 Spallanzani to Griffin -- 1.2 Early Lab and Field Experiments -- 1.2.1 Experiments in the Griffin Lab (1956-1965) -- 1.2.2 Other Advances in the Mid-1960s -- 1.2.3 Uli Schnitzler and Doppler Shift Compensation -- 1.2.4 Enter Jim Simmons -- 1.2.5 1957-1980: Studies on Adaptations of the Auditory Nervous System for Echolocation -- 1.3 Taking Up the Tradition of Studying Bats in the Field -- 1.4 The Echolocation Calls of Bats -- 1.5 Overview of This Volume -- References -- Chapter 2: Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats -- 2.1 Introduction -- 2.1.1 The Molecular Phylogenetic Position of Chiroptera Within Eutheria -- 2.1.2 Molecular Phylogenetic Relationships Within Chiroptera -- 2.1.3 Yinpterochiroptera and Yangochiroptera -- 2.2 Auditory Specializations for Echolocation -- 2.2.1 The Molecular Basis of Hearing -- 2.2.2 Studying the Molecular Basis of Hearing and Echolocation in Bats -- 2.2.2.1 Candidate Gene Approaches -- 2.2.2.2 Genomics Approaches -- 2.2.2.3 Future Approaches -- 2.3 Are Sensory Trade-Offs Associated with the Evolution of Echolocation? -- 2.3.1 Olfaction -- 2.3.2 Taste -- 2.3.3 Vision -- 2.4 Summary -- References -- Chapter 3: Ultrasound Production, Emission, and Reception -- 3.1 Introduction -- 3.2 Sound Production by the Bat Larynx -- 3.2.1 Morphology of the Bat Larynx -- 3.2.2 Sound Production Mechanisms -- 3.2.3 Non-Linear Phenomena in Sound Production: Echolocation Versus Communication Calls ("Yodeling") -- 3.3 Neural Control of Sound Production in Bats -- 3.3.1 Neural Control of the Bat Larynx -- 3.3.2 Brain Stem Circuits and Mechanisms -- 3.3.3 Higher Order Brain Structures Involved in Vocal Control. , 3.3.3.1 Anterior Cingulate Cortex (ACC) -- 3.3.3.2 Basal Ganglia -- 3.4 Sensory Feedback for the Control of Echolocation Calls -- 3.4.1 Auditory Feedback -- 3.4.1.1 Vocal-Respiratory Coupling and Somatosensory Feedback -- 3.4.1.2 Vocalization and Flying -- 3.5 Static and Dynamic Diversity in Sound-Diffracting Structures -- 3.5.1 Static Complexity -- 3.5.2 Dynamic Complexity -- 3.6 Evidence for a Functional Role for Dynamic Complexity -- 3.6.1 Dedicated Specializations -- 3.6.2 Prevalence Within the Biosonar System -- 3.6.3 Prevalence Across Species -- 3.7 Lingual Echolocation in Rousettus -- References -- Chapter 4: To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats -- 4.1 Introduction -- 4.2 Evolution of Echolocation -- 4.3 Aerial Hawking -- 4.3.1 Echolocating Bats and Insects with Bat-Detecting Ears -- 4.3.2 Case Study: Vespertilionid Bats and Sound-Producing Tiger Moths -- 4.4 Substrate Gleaning -- 4.4.1 Gleaning Bats Use Prey-Generated Cues -- 4.4.2 Gleaning Bats That Eavesdrop on Signaling Prey -- 4.4.3 Case Study: The Fringe-Lipped Bat -- 4.4.4 Auditory and Behavioral Adaptations to Eavesdropping -- 4.4.5 Sensory Niche Partitioning in Gleaning Bats -- 4.4.6 Challenges in Relying on the Use of Prey-Emitted Acoustic Cues -- 4.4.7 Case Study: The Common Big-Eared Bat Defies Categories -- 4.5 Summary -- References -- Chapter 5: Roles of Acoustic Social Communication in the Lives of Bats -- 5.1 Introduction -- 5.2 Social Calls -- 5.2.1 Mate Attraction -- 5.2.2 Antagonistic Interactions -- 5.2.3 Locating Conspecifics -- 5.2.3.1 Mother-Pup Recognition -- 5.2.3.2 Group Formation and Cohesion -- 5.2.4 Distress -- 5.3 The Communicative Role of Echolocation -- 5.3.1 Activity Information -- 5.3.2 Personal Information -- 5.3.3 Interspecific Differences in Echolocation: Evidence for Acoustic Communication?. , 5.4 Future Directions -- 5.5 Summary -- References -- Chapter 6: Guild Structure and Niche Differentiation in Echolocating Bats -- 6.1 Diversity in Bats -- 6.2 Sensory and Motor Tasks of Foraging Bats -- 6.2.1 Spatial Orientation -- 6.2.2 Biotope Recognition -- 6.2.3 Food Finding -- 6.3 The Masking Problem -- 6.4 Habitat Types and Foraging Modes -- 6.4.1 Definitions -- 6.4.2 Borders Between Habitats -- 6.5 Bat Guilds -- 6.5.1 Definition of Guilds -- 6.5.1.1 Open Space Aerial Foragers -- 6.5.1.2 Edge Space Aerial Foragers -- 6.5.1.3 Edge Space Trawling Foragers -- 6.5.1.4 Narrow Space Flutter-Detecting Foragers -- 6.5.1.5 Narrow Space Active-Gleaning Foragers -- 6.5.1.6 Narrow Space Passive-Gleaning Foragers -- 6.5.1.7 Narrow Space Passive-/Active-Gleaning Foragers -- 6.5.2 Approach Behavior -- 6.5.3 Assigning Bat Species to Guilds -- 6.6 Niche Differentiation -- 6.6.1 Niche Dimensions and Niche Spaces -- 6.6.2 Niche Space of Aerial-Hawking and Trawling Bats -- 6.6.3 Niche Space of Flutter-Detecting Bats -- 6.6.4 Niche Space of Gleaning Bats -- 6.6.4.1 Animalivorous Gleaning Bats -- 6.6.4.2 Phytophagous Gleaning Bats -- 6.7 Conclusion -- References -- Chapter 7: Neural Coding of Signal Duration and Complex Acoustic Objects -- 7.1 Introduction -- 7.2 Neural Coding of Signal Duration in the Central Auditory System -- 7.2.1 Signal Duration Is Important for Echolocation -- 7.3 Duration-Tuned Neurons in Bats -- 7.3.1 Types of Duration-Tuned Neurons -- 7.3.2 Duration-Tuned Neuron Response Properties -- 7.4 Conceptual and Computational Mechanisms of Duration Tuning -- 7.4.1 Coincidence Detection Mechanism -- 7.4.2 Anti-Coincidence Mechanism -- 7.4.3 Multiple Mechanisms of Duration Tuning -- 7.5 Duration Tuning and Echolocation -- 7.6 Neural Coding of Complex Acoustic Features in the Bat Auditory System -- 7.6.1 Perception of Complex Auditory Objects. , 7.6.2 Passive Hearing and Communication Sounds -- 7.7 Neural Coding of Complex Echo-Acoustic Objects -- 7.7.1 Neural Coding of Object Spatial Extent -- 7.7.2 Object Normalization -- 7.7.3 Neural Coding of Stochastic Echoes -- 7.8 Neural Coding of Species-Specific Vocalizations -- 7.8.1 Non-Primary Auditory Cortex -- 7.8.2 Primary Auditory Cortex -- 7.8.3 Hemispheric Asymmetries and Sex-Specific Differences -- 7.8.4 Coding of Emotional Content of Communication Calls in the Amygdala -- 7.9 Summary -- References -- Chapter 8: The Neural Processing of Frequency Modulations in the Auditory System of Bats -- 8.1 Introduction -- 8.1.1 Some General Comments on Echolocation -- 8.1.2 Themes of the Chapter -- 8.2 The Vocal Repertoire of Bats -- 8.3 Responses in the Colliculus Are Selective -- 8.4 Spectrotemporal Receptive Fields Reveal the Importance of Sideband Inhibition -- 8.4.1 Spectrotemporal Receptive Fields Explain FM Directional and Velocity Selectivities -- 8.4.2 Predictive Spectrotemporal Receptive Fields Found in Minority of IC Neurons -- 8.4.3 Most Neurons Had More Than One Spectrotemporal Filter -- 8.5 The Importance of Frequency Modulations for Call Selectivity -- 8.6 Directional Preferences for FMs Measured with In-Vivo Whole Cell Recordings -- 8.7 The Role of Spike Timing for Creating Directional Selectivity -- 8.7.1 FM Directional Selectivity Formed by Timing Disparities of Excitation and Inhibition Does Not Apply to All IC Cells -- 8.7.2 The Timing of Excitation and Inhibition Explored with Whole Cell Recordings -- 8.8 Combination Sensitivity -- 8.8.1 Combination Sensitive Neurons Are Created in the IC -- 8.8.2 Combination Sensitivity also Imparts Selectivity for Communication Calls in the IC -- 8.8.3 Combination Sensitivity also Occurs in the Auditory Systems of Other Animals -- 8.9 Summary and Concluding Thoughts -- References. , Chapter 9: Behavioral and Physiological Bases for Doppler Shift Compensation by Echolocating Bats -- 9.1 Introduction -- 9.2 General Principles of Doppler Shift Compensation -- 9.2.1 Doppler Effect -- 9.2.2 Ecology of Doppler Shift Compensation -- 9.2.2.1 High Duty Cycle Echolocation in Bats -- 9.2.2.2 Discovery of Doppler Shift Compensation -- 9.2.2.3 Discovery of the Auditory Fovea -- 9.2.2.4 Impact of Doppler Shift Compensation on High Duty Cycle Echolocation -- 9.3 Adaptations for Doppler Shift Compensation in the Auditory Receiver -- 9.3.1 Auditory Fovea in the Cochlea of High Duty Cycle Echolocating Bats -- 9.3.2 Auditory Fovea in the Higher Auditory Nuclei -- 9.3.3 The Processing of Flutter Information in the Auditory Pathway -- 9.4 Ethology of Doppler Shift Compensation -- 9.4.1 Acoustical Measurements of Doppler Shift Compensation Behaviors -- 9.4.2 Telemetry Recordings of Bats During Flight -- 9.4.3 Flutter Detection by Doppler Shift Compensation -- 9.4.4 Effect of Echo Intensity on Doppler Shift Compensation -- 9.4.5 Jamming Avoidance Behavior of High Duty Cycle Echolocating Bats -- 9.5 Evolution of Doppler Shift Compensation -- 9.5.1 Doppler Shift Compensation in the Bat Phylogenetic Tree -- 9.5.2 Doppler Shift Compensation: CF and HDC in Bat Echolocation -- 9.5.3 Ecological and Behavioral Factors in the Evolution of Doppler Shift Compensation -- 9.6 Summary -- References -- Chapter 10: Perceiving the World Through Echolocation and Vision -- 10.1 Introduction -- 10.2 Essential Details About Echolocation Related to Spatial Perception -- 10.3 Spatial Perception in Vision and Echolocation -- 10.4 Inferences from Behavioral Data on 3-D Object Position in Vision and Echolocation -- 10.5 Stroboscopic Nature of Echolocation -- 10.6 Scene Analysis by Vision and Echolocation -- 10.7 Summary and Conclusions -- References. , Chapter 11: Perspectives and Challenges for Future Research in Bat Hearing.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Otoacoustic emissions. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (498 pages)
    Edition: 1st ed.
    ISBN: 9780387714691
    Series Statement: Springer Handbook of Auditory Research Series ; v.30
    DDC: 573.89344
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...