GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The 3′ region of a gene designated cipB, which shows strong homology with cipA that encodes the cellulosome SL subunit of Clostridium thermocellum ATCC 27405, was isolated from a gene library of C. thermocellum strain YS. The truncated S1 protein encoded by the cipB derivative bound tightly to cellulose. The cellulose-binding domain in this polypeptide consisted of a C-terminal proximal 167 residue sequence which showed complete identity with residues 337–503 of mature SL from C. thermocellum strain ATCC 27405. The cellulose-binding domain interacted with both crystalline and amorphous cellulose, but not with xylan.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The five conserved tryptophan residues in the cellulose binding domain of xylanase A from Pseudomonas fluorescens subsp. cellulosa were replaced with alanine and phenylalanine. The mutated domains were fused to mature alkaline phosphatase, and the capacity of the hybrid proteins to bind cellulose was assessed. Alanine substitution of the tryptophan residues, in general, resulted in a significant decrease in the capacity of the cellulose binding domains to bind cellulose. Mutant domains containing phenylalanine substitution retained some affinity for cellulose. The C-terminal proximal tryptophan did not play an important role in ligand binding, while Trp13, Trp34 and Trp38 were essential for the cellulose binding domain to retain cellulose binding capacity. Data presented in this study suggest major differences in the mechanism of cellulose attachment between Pseudomonas and Cellulomonas cellulose binding domains.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Ruminococcus albus ; Endoglucanase ; Sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The complete nucleotide sequences of Ruminococcus albus genes celA and celB coding for endoglucanase A (EGA) and endoglucanase B (EGB), respectively, have been determined. The celA structural gene consists of an open reading frame of 1095 bp. Confirmation of the nucleotide sequence was obtained by comparing the predicted amino acid sequence with that derived by N-terminal analysis of purified EGA. The celB structural gene consists of an open reading frame of 1227 bp; 7 by upstream of the translational start codnn of celB is a typical gram-positive Shine-Dalgarno sequence. The deduced N-terminal region of EGB conforms to the general pattern for the signal peptides of secreted prokaryotic proteins. The complete celB gene, cloned into pUC vectors, caused lethality in Escherichia coli. In contrast, celA cloned in pUC18, under the control of lacZp, directed high-level synthesis of EGA in E. coli JM83. EGA in cell-free extract, purified to near homogeneity by ionexchange chromatography, had a Mr of 44.5 kDa. Gene deletion and subcloning studies with celA revealed that EGA hydrolysed both CMC and xylan, and did not contain discrete functional domains. EGA and EGB showed considerable homology with each other, in addition to exhibiting similarity with Egl (R. albus), EGE (Clostridium thermocellum) and End (Butyrivibrio fibrisolvens).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...