GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-21
    Description: To decipher the petrogenesis of chromitites from the Moho Transition Zone of the Cretaceous Oman ophiolite, we carried out detailed scanning electron microscope and electron microprobe investigations of ~500 silicate and chromite inclusions and their chromite hosts, and oxygen isotope measurements of seven chromite and olivine fractions from nodular, disseminated, and stratiform ore bodies and associated host dunites of the Maqsad area, Southern Oman. The results, coupled with laboratory homogenization experiments, allow several multiphase and microcrystal types of the chromite-hosted inclusions to be distinguished. The multiphase inclusions are composed of micron-size (1–50 μm) silicates (with rare sulphides) entrapped in high cr-number [100Cr/(Cr + Al) up to 80] chromite. The high cr-number chromite coronas and inclusions are reduced (oxygen fugacity, f O2 , of ~3 log units below the quartz–fayalite–magnetite buffer, QFM). The reduced chromites, which crystallized between 600 and 950°C at subsolidus conditions, were overgrown by more oxidized host chromite ( f O2 QFM) in association with microcrystal inclusions of silicates (plagioclase An 86 , clinopyroxene, and pargasite) that were formed between 950 and 1050°C at 200 MPa from a hydrous hybrid mid-ocean ridge basalt (MORB) melt. Chromium concentration profiles through the chromite coronas, inclusions, and host chromites indicate non-equilibrium fractional crystallization of the chromitite system at fast cooling rates (up to ~0·1°C a – 1 ). Oxygen isotope compositions of the chromite grains imply involvement of a mantle protolith (e.g. serpentinite and serpentinized peridotite) altered by seawater-derived hydrothermal fluids in an oceanic setting. Our findings are consistent with a three-stage model of chromite formation involving (1) mantle protolith alteration by seawater-derived hydrothermal fluids yielding serpentinites and serpentinized harzburgites, which were probably the initial source of chromium, (2) subsolidus crystallization owing to prograde metamorphism, followed by (3) assimilation and fractional crystallization of chromite from water-saturated MORB. This study suggests that the metamorphic protolith assimilation occurring at the Moho level may dramatically affect MORB magma chemistry and lead to the formation of economic chromium deposits.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-23
    Description: The analysis of new and published Hf and Nd isotopic data of late Cenozoic Andean arc igneous rocks from central Chile, coupled with our improved knowledge of orogenic processes in the region, reveals a tight link between major magmatic isotopic shifts and different Andean basement domains and timing of the main uplifting event. Oligocene–Miocene magmas from the Western Principal Cordillera show a nearly constant and juvenile composition ( HfI : +5 to +10; NdI : +2 to +7), while those from the Eastern Principal Cordillera, formed since early late Miocene, are variably more enriched ( HfI : –4 to +4; NdI : 0 to +3). Post–4.8 Ma magmas from both belts share an enriched signature ( NdI : –2 to +2) reflecting source contamination from east to west, contrary to the eastward subduction direction, in a process that occurred toward the end of the main Andean uplifting event. This results from the deep western basement underthrusting the orogen, and thus accounts for the westward propagation of the eastern enriched isotopic signatures approximately coeval with thickening and uplifting events. The observed patterns highlight the strong control exerted by the continental lithosphere on the composition of arc magmas over deep controls from the subduction-modified asthenospheric mantle. Moreover, they dynamically represent both (1) the hybridization affecting magmas ascending from the mantle in a heterogeneous continental lithosphere, and (2) the evolution of such lithosphere resulting from the thermal weakening and mass transfer processes occurring underneath cordilleran arcs during mountain building.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 18 (1973), S. 333-338 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 118 (1993), S. 43-64 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 51 (1980), S. 71-93 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 19 (1979), S. 293-306 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Résumé Les données pétrologiques et géochimiques montrent clairement que les péridotites ont un caractère fortement résiduel. Les fortes teneurs en Cr# [Cr#= 100*Cr/(Cr+Al)] du spinelle (〉 60) associées aux très faibles concentrations en terres rares lourdes sur roche totale (〈0.1 aux valeurs chondritiques) témoignent de fort taux de fusion (25 à 35%) que l'on rencontre habituellement dans les contextes de subduction. Les enrichissements importants en TiO2 des spinelles et clinopyroxènes secondaires des peridotites (〉 1 % et 0.5%, respectivement) sent interprétés comme résultant de phénomènes d'imprégnations importants entre les péridotites et des liquides magmatiques. Les fortes concentrations en terres rares légères des péridotites (proches des valeurs chondritiques) associées aux fortes anomalies en Nb, Sr, Zr, et Hf suggerent que ces liquides étaient de nature boninitique. Les basaltes et les cumulats gabbroïques dérivent de la cristallisation de liquides tholéiitiques de type MORB. Leurs fortes anomalies en Nb, suggerènt cependant une origine dans un bassin arrière-arc De nouvelles datations isotopiques40K40Ar obtenues sur les basaltes arrière-arch (29 Ma) et les boninites (43 Ma) montrent que le massif des Cyclops s' est probablement formé dans un contexte de zone de subduction impliquant une subduction vers le Sud de la lithosphere océanique australienne sous la marge nord australienne. Les péridotites et laves associées (boninites) se seraient formées à l'Eocène dans un bassin avant-arc, avant d'être obductées au Miocène sur l'are situé plus au sud. Les rétrochevauchements Pliocène ont conduit aux charriages tardifs du bassin arrière-arc sur l'arc et le bassin avant-arc.
    Notes: Summary The Cyclops massif (Irian Jaya - Western Indonesia) displays all components of an ophiolitic sequence including residual mantle peridotites (harzburgites and dunites), cumulate gabbros, dolerites, normal mid-oceanic ridge basalts (N-MORB) and minor amounts of boninitic lavas. This ophiolitic series tectonically overlies high temperature (HT)-high pressure (HP) mafic rocks metamorphosed during the Miocene. Mineral chemistry and bulk rock rare-earth element (REE) abundances of the peridotites are characteristic of highly residual mantle rocks. The high Cr# [Cr#=100*Cr/(Cr+Al)] of spinel (up to 60) and very low heavy rare-earth element (HREE) concentrations of peridotites (〈 0.1 time the chondritic values) are in agreement with residues of 25 to 35% melting as expected for peridotites from supra-subduction zone environments. Ti-enrichments in spinels and secondary clinopyroxenes (up to 1%, and 0.5%, respectively) are likely a consequence of reaction between mantle-derived melts and the host peridotites. High light rare-earth element (LREE) concentrations reaching up to chondritic values and high field strength element (HFSE) anomalies suggest that the initial composition of the residual peridotites has been previously modified by the passage of boninitic melt(s). The associated basalts and related cumulate rocks display major and trace element contents with Nb-negative anomalies typical of back-arc magmas. New40K/40Ar isotopic ages obtained from the back-arc basin basalts (BABB - 29 Ma) and boninites (43 Ma) combined with the geochemical signatures of the rocks studied here, indicate that the Cyclops Mountains may have formed in a single suprasubduction environment. This implies southward plunging subduction of the Australian oceanic lithosphere beneath the northern part of the Australian margin. The ultramafic rocks and related lavas (boninites) likely formed during the Eocene in a forearc environment, before their southward obduction onto the island arc crustal welt during the early Miocene. The Pliocene back-thrusting event has led to the slicing of the backarc basin series onto the arc and fore-arc sequences.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A new apparatus, Venturi Effect System (VES), designed for sampling volcanic plumes is described and tested at Vulcano (Italy). This device, together with purified basic NH4OH solutions, supplies optimal conditions to obtain reliable Stotal/Cl/F ratios and enrichment factors for metallic trace elements (MTE). Good concordance for acid gas ratios and metal enrichment factors in both the gas phase and the related plume allows the procedure to be validated. The VES appears in Vulcano conditions as a simple, robust and easily portable apparatus that allows reliable collection of both acid gases and MTE within a single sample and the analysis with current chemical methods (High Pressure Liquid Chromatography, Inductively Coupled Plasma-Mass Spectrometry. This apparatus may be suitable for more difficult volcanoes where only the plume can be sampled.
    Description: Published
    Description: 95-103
    Description: partially_open
    Keywords: volcanic plume ; acid gases ; metallic trace elements ; sampling ; monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article , article
    Format: 1060439 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q02001, doi:10.1029/2008GC002236.
    Description: Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal “shield building” stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866–0.512909, 206Pb/204Pb: 18.904–19.054; La/Sm: 3.71–4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912–0.512948, 206Pb/204Pb: 19.959–20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999–0.513050, 206Pb/204Pb: 19.080–19.237; La/Sm: 5.73–8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.
    Description: JBT acknowledges financial support from the French Institut National des Sciences de l’Univers. The isotope work at SDSU was made possible by NSF and Keck grants to BBH.
    Keywords: Jasper Seamount ; Geochemistry ; Isotope ; Melting model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...