GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (16 Seiten, 1,49 MB)
    Language: German
    Note: Förderkennzeichen BMBF 03F0681B. - Verbund-Nummer 01149364 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-14
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Atlantic herring (〈italic toggle="no"〉Clupea harengus〈/italic〉) plays a key role within temperate marine food webs and is targeted by a significant over‐regional fishery. Due to its high economic importance, dynamics in herring stock biomass and recruitment are closely monitored, forming the basis for fisheries management advice. As recruitment patterns translate into the adult stock biomass, early life stage ecology has been thoroughly addressed in fisheries research. Larval monitoring programs commonly focus on length measurements and abundance indices, rarely, information on larval developmental stages is given. As length is highly influenced by temperature, salinity and food availability, their size range can significantly vary between cohorts, populations, and ecotypes. Nowadays, a systematic staging system from the 1970s provides the standard guide for herring larval development, although it does not fully resolve important developmental stages. Here, we propose an improved staging system based on external morphology and skeletal development of herring larvae. The staging system has been developed and tested with herring larvae from different populations of the North and Baltic Sea to ensure applicability. The system comprises 15 stages (+substages) in 5 major developmental phases: the yolk sac phase, the dorsal fin development, the caudal fin development, the pelvic fin development, and the juvenile phase. This staging system aims to simplify herring larval staging to gain a more specific picture of early life dynamics. Because of the detailed description of the development, future studies are better equipped to identify stages which, for example, show high mortality rates and better link them to environmental circumstances.〈/p〉
    Description: Universität Rostock http://dx.doi.org/10.13039/501100012688
    Description: Promotionsstipendium Universität Rostock
    Keywords: ddc:597 ; Atlantic herring ; larval phases ; staging system
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: In fishery science, early life-stage survival and development are regarded as major factors driving the population dynamics of marine fishes. During the last century, the main research focus has been on the spatio-temporal match of larval fish and appropriate food (bottom-up processes). However, these field studies are often criticised for their limited capability to disentangle their results from mortality caused by predation since these top-down mechanisms are rarely studied. We examined the predation on herring (Clupea harengus) larvae in a Baltic inshore lagoon by investigating the spatio-temporal overlap of larval herring and their potential predators such as the dominant threespine stickleback (Gasterosteus aculeatus) in distinct habitats (sublittoral and littoral areas) using a set of different gears and sampling techniques. Despite significant spatial and temporal predator-prey overlap, stomach analyses suggested that very few larvae were consumed by sticklebacks, even if projected to the entire study area and season. Other well-known predators of clupeid larvae such as gelatinous plankton occur later in the year after young herring have migrated out of the system. The observed predation on herring larvae was much less than expected and appears being a minor factor in determining herring reproduction success in our study area, particularly if compared to other causes of mortality such as egg predation. Providing a relatively good shelter from predation might be a key element making transitional waters valuable nursery grounds for the offspring of migrating marine fish species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: During their spring migration, Atlantic herring (Clupea harengus) populations in the Baltic Sea rely on shallow transitional waters, such as estuaries, bays, and lagoons for spawning. Such inshore spawning grounds are ecologically important by providing suitable substrates for demersal egg deposition. These habitats are often highly impacted by multiple anthropogenic threats. Decades of eutrophication have caused a decline in depth distribution of submerged aquatic vegetation, the main herring spawning substrate in the Baltic Sea. Nowadays, spawning beds are limited to the shallow littoral zone (≤3 m depth). Accordingly, macrophytes are increasingly exposed to mechanic forcing due to storm-induced wave action. Generally, reproductive success and year class strength of the Western Baltic herring population is strongly determined by the survival of early life stages such as eggs and larvae in local nursery areas. However, explicit mechanisms by which local stressors might affect overall recruitment are currently not well understood. Hypothesizing that aquatic vegetation limited by water depth causes high herring egg mortality due to increased exposure to storm-induced hydrodynamics, we performed a combination of field studies investigating the impact of storm events on herring egg loss. Results of an egg loss experiment revealed a total egg loss of 29% in one single spawning bed during a storm event within the spawning season and the quantification of eggs attached to macrophyte litter on the shoreline emphasize the potential for regional weather extremes such as storm events to act as influential stressors for herring reproduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Shallow shore zones are generally considered to provide juvenile habitats for many invertebrate and fish species and additionally serve as spawning grounds for important components of oceanic food webs and fishery resources such as herring (Clupea spp.). Herring attach their demersal eggs to benthic substrates, rendering reproduction success vulnerable to environmental changes and local habitat alterations. However, little information is available on the effects of different substrates on the survival of demersal eggs. Hypothesizing that the structural complexity of spawning substrates generally affects herring egg survival and that the effect magnitude depends on the suitability of ambient environment, field experiments were conducted on a major spawning ground of C. harengus in the Southwestern Baltic Sea. Herring eggs were artificially spawned on substrates of different structural complexities and incubated in situ under differing temperature regimes, at the beginning and the end of the natural herring spawning season, to include the full suite of stressors occurring on littoral spawning beds. Results of this study indicate a positive relation between high structural complexity of spawning substrates and herring egg survival. Mean egg mortality was three times higher on substrates of lowest complexity than on highly complex substrates. These differences became even more prominent under unfavorable conditions that appeared with rising water temperatures later in the spawning season. Although the mechanisms are still unclear, we conclude that structural complexity, particularly formed by submerged aquatic vegetation, provides a crucial prerequisite for the successful reproduction of substrate spawning marine fishes such as herring in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley / Association for the Sciences of Limnology and Oceanography
    In:  Limnology and Oceanography, 62 (6). pp. 2616-2628.
    Publication Date: 2020-02-06
    Description: Atlantic herring (Clupea harengus) migrates from offshore to coastal areas to spawn and their eggs and larvae may substantially increase prey resources for resident predators. We combined an in situ predator exclusion experiment using eggs naturally spawned on submerged aquatic vegetation and field observations of predator abundance to estimate the magnitude of predation mortality of herring eggs. During our predator exclusion experiment, performed in an important spawning ground in the southwest Baltic Sea, 20% of the herring eggs were consumed resulting in an extrapolated predation of 42% of all eggs between spawning and hatch. Abundance and stomach content analyses indicated that one predator (threespine stickleback, Gasterosteus aculeatus) was responsible for the majority of the predation impact. Predation mortality estimates from this in situ study were more than 10-fold higher than those of an empirical egg predation model for the same predator in the same region. Our findings highlight the potential of resident predators to regulate the survival of early life stages of ocean-going fishes that rely on the nursery functions of inshore transitional waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-22
    Description: Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-24
    Description: The Greifswalder Bodden (GWB) is considered to be the most important spawning and nursery area for the western Baltic spring-spawning herring. However, the biotic and abiotic reasons for this are still unclear. Consequently, we investigated larval growth conditions in the GWB and in the Kiel Canal (KC), another nursery and spawning area of Baltic herring. We investigated prey quantity and quality [copepod abundance and essential fatty acid (EFA) concentration] as well as biochemically derived growth rates and fatty acid content of larval herring in spring 2011. A significant correlation between larval growth and larval EFA concentration could be observed in the GWB. The highest growth rates and EFA concentrations in the larval herring coincided with high food quality. Compensating effects of food quality on food quantity and vice versa could be observed in both the GWB and the KC. While larval growth rates in the KC were high early in the season, highest growth rates in the GWB were achieved late in the season. In conclusion, neither area was superior to the other, indicating similar growth conditions for larval herring within the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Food-limited growth of larval fish, defined as growth rates lower than observed in other habitats or from laboratory experiments at a given temperature, is rarely reported in field studies. This would imply that either larval fishes are living in an environment characterized by plenty of food, that nutritional condition selective mortality (i.e., eliminating the weak) is very strong, or this impression is caused by misinterpretation of data concerning e.g., poor taxonomical resolution of potential prey items, i.e., total potential prey abundance is high, but positively selected food is actually scarce. We analyzed RNA:DNA derived growth rates of herring larvae (Clupea harengus L.) and taxonomically differentiated prey field data of six consecutive spring seasons from the Kiel Canal, an artificial waterway in northern Germany, in order to test if food-limited growth in larval fish can occur recurrently in coastal habitats. In all years analyzed, larval growth rates decreased simultaneously with prey abundance at the end of each larval season. Furthermore, larval growth rates were observed to be lower than mean growth rates observed in another herring larvae nursery area at temperatures above 15 °C. Asymptotic relationships between prey abundance and larval growth rates were observed, further supporting the hypothesis of food-limitation. As larval growth was best explained by the abundance of the numerically dominant calanoid copepod Eurytemora affinis, the paramount importance of the dominant prey item is highlighted. We conclude that food limitation can be a severe and re-occurring issue for larval fish in coastal habitats, and that certain prey items play a crucial role in determining larval growth rates, and therefore potentially recruitment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...