GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2023-07-20
    Description: The seismic activity of a planet can be described by the corner magnitude, events larger than which are extremely unlikely, and the seismic moment rate, the long‐term average of annual seismic moment release. Marsquake S1222a proves large enough to be representative of the global activity of Mars and places observational constraints on the moment rate. The magnitude‐frequency distribution of relevant Marsquakes indicates a $b$‐value of 1.06. The moment rate is likely between $1.55\times {10}^{15}\mathrm{N}\mathrm{m}/\mathrm{a}$ and $1.97\times {10}^{18}\mathrm{N}\mathrm{m}/\mathrm{a}$, with a marginal distribution peaking at $4.9\times {10}^{16}\mathrm{N}\mathrm{m}/\mathrm{a}$. Comparing this with pre‐InSight estimations shows that these tended to overestimate the moment rate, and that 30% or more of the tectonic deformation may occur silently, whereas the seismicity is probably restricted to localized centers rather than spread over the entire planet.
    Description: Plain Language Summary: The seismic moment rate is a measure for how fast quakes accumulate deformation of the planet's rigid outer layer, the lithosphere. In the past decades, several models for the deformation rate of Mars were developed either from the traces quakes leave on the surface, or from mathematical models of how quickly the planet's interior cools down and shrinks. The large marsquake that occurred on the 4th of May 2022 now allows a statistical estimation of the deformation accumulated on Mars per year, and thus to confront these models with reality. It turns out that, although there is a considerable overlap, the models published prior to InSight tend to overestimate the seismic moment rate, and hence the ongoing deformation on Mars. Possible explanations are that 30% or more of the deformation occurs silently, that is, without causing quakes, or that not the entire planet is seismically active but only specific regions.
    Description: Key Points: A single large marsquake suffices to constrain the global seismic moment rate. Pre‐InSight estimations tended to overestimate the moment rate. Either a significant part of the ongoing deformation occurs silent, or seismic activity is restricted to some activity centers, or both.
    Description: Eidgenössische Technische Hochschule Zürich http://dx.doi.org/10.13039/501100003006
    Description: National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104
    Description: UK Space Agency http://dx.doi.org/10.13039/100011690
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: Insight SFI Research Centre for Data Analytics http://dx.doi.org/10.13039/501100021525
    Description: http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
    Description: http://doi.org/10.17189/1517570
    Keywords: ddc:523 ; Mars ; InSight ; seismic moment rate ; S1222a
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 102 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Rapeseed leaf discs (RLD) subjected to upshock osmotic stress accumulate proline (Pro). Di- and polyamines (PA) supplied to the external medium suppressed Pro accumulation. These effects were dependent not only on diamine and PA concentrations but also on their cationic charge. The suppression of Pro accumulation required that diamine and PA be taken up and further accumulated in the leaf tissues. Glycine betaine (GB) also inhibited Pro accumulation, with the effects of GB and PA being additive. Experiments to elucidate the mechanism(s) responsible for the inhibitory effect of spermine (Spm) indicated that it could be simulated with methionine sulfoximine (MSO), a potent inhibitor of glutamine synthetase. The inhibitory effects of Spm and MSO were both alleviated by supplying glutamine to the RLD. In addition, Spm as well as MSO increased glutamate content, indicating that these compounds could inhibit the conversion of glutamate to proline. A comparison of the changes in chlorophyll and protein content of RLD osmotreated with or without added Spm indicates that this PA behaves as an antisenescent compound, preventing chlorophyll breakdown and proteolysis and hence the conversion of amino acids to Pro. Since the PA concentrations used in this work were much higher than the endogenous concentrations in RLD, the significance of PA under osmotic stress remains unclear. This study shows, however, that PA can suppress Pro accumulation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...