GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2021-02-08
    Description: Associations between resembling species have been noted long ago by naturalists and have been traditionally interpreted in terms of mimicry, whereby a mimetic species is naturally selected to resemble a model (Batesian and aggressive mimicry) or a co-mimic (Müllerian mimicry). Recently, it has been proposed that resemblances among reef fishes might be coincidental and that associations between them may result from social-traps, i.e., out-of-normal-context responses toward similar-looking individuals. The social-trap hypothesis is stimulating and calls for an in-depth reassessment of putative cases of mimicry in reef fishes. Nevertheless, an explicit field-based evaluation of these two hypotheses has yet to be conducted. Here, we test five specific predictions derived from the two hypotheses in the association between the butter hamlet (Hypoplectrus unicolor, Serranidae) and the foureye butterflyfish (Chaetodon capistratus, Chaetodontidae), which was one of the associations considered to develop the social-trap hypothesis. We present the results from 117 h of behavioral observation, 21 transect surveys covering 8400 m2 of reef, stomach content analysis of 107 fish, morphometric analysis of 165 fish and size measurements of 386 fish from Bocas del Toro, Panama. These data indicate that (i) C. capistratus is 14 times more abundant than H. unicolor at our study site, (ii) the association with C. capistratus represents only 4% of H. unicolor’s time, (iii) the association targets Coryphopterus gobies in particular and deceives this prey, (iv) H. unicolor departs from sympatric hamlets not only in terms of color pattern but also behavior, diet, size and body shape, and (v) H. unicolor spends only 0.66% of its time with conspecifics out of mating contexts. We conclude that the association between H. unicolor and C. capistratus in Bocas del Toro is a true mimetic relationship, but do not rule out the possibility that a social-trap might have contributed to its evolution
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome-wide levels of divergence that are comparable among allopatric populations (Fst estimate = 0.0042) and sympatric species (Fst estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (Fst estimate ≈ 0), a very small proportion of Fst outlier loci (0.05–0.07%), and remarkably few repeated outliers (1–3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The link between ecology and reproductive isolation constitutes the cornerstone of the ecological hypothesis of speciation. Such a link can arise when traits under ecologically based selection are also used as cues for mating (‘magic traits’) or as a by-product of habitat choice when mating takes place within habitats. Here, we propose that behavioural syndromes may also constitute such a link. We illustrate this mechanism in the butter hamlet, Hypoplectrus unicolor, a reef fish from the wider Caribbean, with aggressive mimicry as the focal ecological trait. Aggressive mimicry is of particular interest in hamlets since it has been proposed to play a key role in the radiation of Hypoplectrus. Individuals from a natural population in Bocas del Toro, Panama, were tagged and their diurnal and spawning behaviours observed over 2 years. The results indicate that aggressive mimicry behaviour differed consistently between individuals and formed two discrete behavioural types that also differed with respect to territoriality. Differences in territoriality between the two behavioural types translated into different use of space in spawning contexts, which generated a tendency for assortative mating by behavioural type. This case study illustrates how behavioural syndromes may form a link between ecologically relevant behavioural traits and mate choice, suggesting that they might play an underappreciated role in the early stages of speciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...