GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 117 (2013): 252–265, doi:10.1016/j.gca.2013.05.004.
    Description: We have conducted the first study of Tl isotope fractionation during sorption of aqueous Tl(I) onto the manganese oxide hexagonal birnessite. The experiments had different initial Tl concentrations, amounts of birnessite, experimental durations, and temperatures, but all of them exhibit heavy Tl isotope compositions for the sorbed Tl compared with the solution, which is consistent with the direction of isotope fractionation observed between seawater and natural ferromanganese sediments. However, the magnitude of fractionation in all experiments is smaller than observed between seawater and natural sediments. The experimental results display a strong correlation between the concentration of Tl in the resulting Tl-sorbed birnessite and the magnitude of fractionation. This correlation is best explained by sorption of Tl to two sites on birnessite, one with large isotope fractionation and one with little or no isotope fractionation. Previous work (Peacock and Moon, 2012, Geochim. Cosmochim. Acta 84, 297-313) indicates that Tl in natural ferromanganese sediments is oxidized to Tl(III) and adsorbed over Mn vacancy sites in the phyllomanganate sheets of birnessite, and we hypothesize that this site is strongly fractionated from Tl in solution due to the change in oxidation state from aqueous Tl(I). In most experiments, which have orders of magnitude more Tl associated with the solid than in nature, these vacancy sites are probably fully saturated, so various amounts of additional Tl are likely sorbed to either edge sites on the birnessite or triclinic birnessite formed through oxidative ripening of the hexagonal starting material, with unknown oxidation state and little or no isotopic fractionation. Thus each experiment displays isotopic fractionation governed by the proportions of Tl in the fractionated and slightly fractionated sites, and those proportions are controlled by how much total Tl is sorbed per unit of birnessite. In the experiments with the lowest initial Tl concentrations in solution (~0.15-0.4 μg/g) and the lowest concentrations of Tl in the resulting Tl-sorbed birnessite (≤17 μg Tl/mg birnessite), we observed the largest isotopic fractionations, and fractionation is inversely proportional to the initial aqueous Tl concentration. Again, this correlation can be explained by the simultaneous occupation of two different sorption sites; vacancy sites that carry isotopically fractionated Tl and a second site carrying slightly fractionated Tl. The fractionation factors observed in nature exceed those in the experiments likely because the Tl concentrations in seawater and in ferromanganese sediments are three to four orders of magnitude lower than in our experiments, and therefore the second slightly fractionated sorption site is not significantly utilized. Temperature (6°C to 40°C) and experimental duration (3 min to 72 hr) appear to have little or no effects on isotope behaviour in this system.
    Description: This study was supported in part by NSF-OCE grant 0526618 to LW and a NERC fellowship to SGN. CLP acknowledges NERC grant NE/F00043X/1 and Royal Society grant RG072164. EMM was supported by a NERC studentship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles 1 . The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear 2–8 . Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction 5 , although reaction kinetics at marine sedimentary temperatures are thought to be slow 9,10 . More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals 11–13 , but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs 4 . Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model 14 , we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr −1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr −1 variation in sedimentary organic preservation over the past 300 million years 6 , we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...