GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Interferometry. ; Interferometers. ; Atoms -- Optical properties. ; Electronic books.
    Description / Table of Contents: The field of atom interferometry has expanded rapidly in recent years, and todays research laboratories are using atom interferometers both as inertial sensors and for precision measurements. Many researchers also use atom interferometry as a means of researching fundamental questions in quantum mechanics. Atom Interferometry contains contributions from theoretical and experimental physicists at the forefront of this rapidly developing field. Editor Paul R. Berman includes an excellent balance of background material and recent experimental results,providing a general overview of atom interferometry and demonstrating the promise that it holds for the future. Key Features * Includes contributions from many of the research groups that have pioneered this emerging field * Discusses and demonstrates new aspects of the wave nature of atoms * Explains the many important applications of atom interferometry, from a measurement of the gravitational constant to atom lithography * Examines applications of atom interferometry to fundamentally important quantum mechanics problems.
    Type of Medium: Online Resource
    Pages: 1 online resource (497 pages)
    Edition: 1st ed.
    ISBN: 9780080527680
    DDC: 539.7
    Language: English
    Note: Front Cover -- Atom Interferometry -- Copyright Page -- Contents -- Contributors -- Preface -- Chapter 1. Optics and Interferometry with Atoms and Molecules -- I. Introduction -- II. Beam Machine -- III. Optics for Atoms and Molecules -- IV. Interferometry with Atoms and Molecules -- V. Atom Interferometry Techniques -- VI. Measuring Atomic and Molecular Properties -- VII. Fundamental Studies -- VIII. Inertial Effects -- IX. Outlook -- Appendix: Frequently Used Symbols -- References -- Chapter 2. Classical and Quantum Atom Fringes -- I. Introduction -- II. Experimental Apparatus -- III. Classical Atom Fringes: The Moire Experiment -- IV. Quantum Fringes: The Interferometer -- V. Comparing Classical and Quantum Fringes: The Classical Analog to an Interferometer -- VI. Atoms in Light Crystals -- References -- Chapter 3. Generalized Talbot-Lau Atom Interferometry -- I. Introduction -- II. SBE Interferometry -- III. GTL Interferometry vs. SBE Interferometry -- IV. What Happens When Frauenhofer Diffraction Orders Overlap? -- V. Historical Development of the Generalized Talbot Effect -- VI. Spatial Properties of the Generalized Talbot Effect "Image -- VII. Wavelength Dependence of the Spatial Spectrum of the Fringe Intensity -- VIII. The Lau Effect -- IX. The Talbot Interferometer -- X. Generalized Lens-Free Talbot-Lau Interferometers -- XI. Fresnel Diffraction and the Talbot Effect with a Spatially Varying Potential -- XII. GTL Atom Interferometry Experiments with K and Li2 -- XIII. Talbot Interferometer Using Na -- XIV. "Heisenberg Microscope" Decoherence GTL Atom Interferometry -- XV. Conclusions and Future Applications -- Appendix: Kirchoff Diffraction with Spatially Varying V ( r ) -- References -- Chapter 4. Interferometry with Metastable Rare Gas Atoms -- I. Introduction -- II. Atomic Beam Source -- III. Young's Double-Slit Experiment. , IV. Holographic Manipulation of Atoms -- V. Two-Atom Correlation -- References -- Chapter 5. Classical and Nonclassical Atom Optics -- I. Introduction -- II. Models and Notation -- III. Atom Focusing and Applications -- IV. Correlation Experiments with Atoms and Photons -- V. Scheme for an Atomic Boson Laser -- References -- Chapter 6. Atom Interferometry and the Quantum Theory of Measurement -- I. Introduction -- II. Fundamental Physics and Atom Interferometers -- III. The Stern-Gerlach Interferometer -- IV. Conclusion -- References -- Chapter 7. Matter-Wave Interferometers: A Synthetic Approach -- I. Physics of the Generalized Beam Splitter -- II. Architecture of Interferometers -- III. Sensitivity to Gravitational and Electromagnetic Fields: A Unified Approach through the Dirac Equation -- IV. Conclusions and Directions of Future Progress -- References -- Chapter 8. Atom Interferometry Based on Separated Light Fields -- I. Introduction -- II. Theoretical Framework -- III. Discussion of Different Types of Interferometers -- IV. Experimental Realization of Borde Interferometry -- V. Precision Determination of Physical Quantities -- VI. Geometrical and Topological Phases -- VII. Influence of the Quantum-Mechanical Measurement Process in the Interferometer -- VIII. Applications of Atom Interferometry in Optical Frequency Standards -- IX. Conclusions -- References -- Chapter 9. Precision Atom Interferometry with Light Pulses -- I. Introduction -- II. Interferometer Theory -- III. Multiphoton Transitions -- IV. Inertial Force Measurements -- V. Photon-Recoil Measurement -- VI. Experimental Techniques -- VII. Conclusions -- References -- Chapter 10. Atom Interference Using Microfabricated Structures -- I. Introduction -- II. Qualitative Considerations -- III. Talbot Effect -- IV. Shadow Effect with Microfabricated Structures -- V. Talbot-Lau Effect. , VI. Talbot and Talbot-Lau Effects in a Thermal Atomic Beam -- VII. Conclusions -- Appendix -- References -- INDEX.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Saint Louis :Elsevier,
    Keywords: Liquid chromatography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (840 pages)
    Edition: 2nd ed.
    ISBN: 9780128093443
    Series Statement: Handbooks in Separation Science Series
    DDC: 543/.84
    Language: English
    Note: Front Cover -- Liquid Chromatography: Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Sample preparation for liquid chromatography -- 1.1 Introduction -- 1.2 Overview -- 1.2.1 Objectives of Sample Preparation -- 1.2.2 Classification of Sample Preparation -- 1.2.3 Automation of Sample Preparation -- 1.2.3.1 Robotic sample preparation systems -- 1.2.3.2 Column switching sample preparation -- 1.3 Sample Extraction Techniques -- 1.3.1 Liquid-Phase Microextraction -- 1.3.1.1 DLLME -- 1.3.1.2 SDME -- 1.3.1.3 HF-LPME -- 1.3.2 Solid-Phase Extraction -- 1.3.2.1 SPE devices and processing steps -- 1.3.2.2 On-line column switching SPE -- 1.3.2.3 Sorbent selection and coating materials for SPE -- 1.3.3 Solid-Phase Microextraction -- 1.3.4 Fiber SPME -- 1.3.4.1 Fiber SPME processing steps for HPLC -- 1.3.4.2 Optimization of fiber SPME methods -- 1.3.4.3 Fiber coating materials -- 1.3.5 In-tube SPME -- 1.3.5.1 In-tube SPME processing systems -- 1.3.5.2 Optimization of in-tube SPME methods -- 1.3.5.3 Capillary coating materials -- 1.3.6 Other Sorbent Microextraction Techniques for HPLC -- 1.3.6.1 Static in-vessel microextraction -- 1.3.6.2 Dynamic in-flow microextraction -- 1.4 Conclusions -- References -- Chapter 2: Derivatization in liquid chromatography -- 2.1 Introduction -- 2.2 Reagent Selection -- 2.2.1 Reagents for UV-Visible Detection -- 2.2.2 Reagents for Fluorescence and Chemiluminescence Detection -- 2.2.3 Reagents for Electrochemical Detection -- 2.2.4 Reagents for Mass-Spectrometric Detection -- 2.2.4.1 Stable isotope-coded derivatizing reagents -- 2.2.5 Reagents for the Formation of Diastereomers -- 2.2.6 Multifunctional Reagents for the Formation of Cyclic Derivatives -- 2.2.7 Solid-Phase Analytical Derivatization -- 2.3 Postcolumn Reaction Detectors -- 2.3.1 Photoreactors -- 2.4 Conclusions -- References. , Chapter 3: Liquid chromatographic separation of enantiomers -- 3.1 Introduction -- 3.2 Short History of Chiral LC Separations -- 3.3 Materials for LC Separation of Enantiomers -- 3.4 Modes of LC Separation of Enantiomers -- 3.4.1 Analytical Scale Separation of Enantiomers -- 3.4.2 Preparative Scale Separation of Enantiomers in LC -- 3.5 Separation of Enantiomers in Supercritical Fluid Chromatography (SFC) -- 3.6 Current Trends -- 3.7 Future Needs -- References -- Chapter 4: Amino acid and bioamine separations -- 4.1 Introduction -- 4.2 Direct Separation of Amino Acids -- 4.2.1 Postcolumn Colorimetric and Fluorescence Derivatization of Amino Acids -- 4.2.2 ESI-MS/MS Determination of Underivatized Amino Acids -- 4.3 Indirect Separation of Amino Acids -- 4.3.1 Derivatization With UV-VIS Reagents -- 4.3.2 Derivatization With Fluorescent Reagents -- 4.3.3 Derivatization for Mass Spectrometric Detection -- 4.4 Enantioselective Liquid Chromatographic Analysis of Amino Acids -- 4.4.1 Chiral Derivatization Reagents for Amino Acid Enantiomers -- 4.4.2 Chiral Stationary Phases for Amino Acid Enantiomers -- 4.4.3 Two-Dimensional Liquid Chromatographic Analysis of Amino Acid Enantiomers -- 4.5 Direct Separation of Biogenic Amines -- 4.6 Indirect Separation of Biogenic Amines -- 4.7 Conclusions -- References -- Chapter 5: Protein and peptide separations -- 5.1 Introduction -- 5.2 Methods of Protein Liquid Chromatography -- 5.2.1 Size-Exclusion Chromatography -- 5.2.2 Ion-Exchange Chromatography -- 5.2.3 Methods Based on the Hydrophobic Interaction -- Hydrophobic-interaction chromatography -- Reversed-phase chromatography -- 5.2.4 Affinity Chromatography -- Pseudoaffinity chromatography -- Hydrophobic charge-induction chromatography -- Immobilized metal-affinity chromatography -- 5.2.5 Chromatography on Hydroxyapatite -- 5.2.6 Chromatography on Monolithic Supports. , 5.2.7 Displacement Chromatography -- 5.3 Conclusions -- Acknowledgments -- Addendum 1: Protein and Peptide Chromatography-References Update -- Ion-exchange chromatography -- Hydrophobic-interaction chromatography: -- Mixed-mode and hydrophobic charge-induction chromatography: -- Reversed-phase chromatography: -- Size-exclusion chromatography -- Displacement chromatography: -- Preparative and process chromatography: -- Monoliths, membranes and other special supports: -- Optimization and protein and peptide characterization: -- LC applications in proteomics and peptidomics: -- Affinity chromatography -- Protein and peptide chromatography, reviews and overviews -- Addendum 2: Sample Displacement Chromatography -- Introduction -- Development and Use of Sample Displacement Chromatography -- Conclusions -- References -- References -- Further Reading -- Chapter 6: Liquid chromatographic separation of oligonucleotides -- 6.1 Introduction -- 6.2 Oligonucleotide and siRNA Structure and Preparation -- 6.3 Chromatographic Separation of Oligonucleotides -- 6.3.1 Separation of Oligonucleotides With Ion-Exchange Liquid Chromatography -- 6.3.2 Separation of Oligonucleotides With IP-RPLC -- 6.3.2.1 Separation of oligonucleotides with IP-RPLC using core-shell particle columns -- 6.3.3 Separation of Oligonucleotides With Mixed-Mode Chromatography -- 6.4 Summary -- References -- Chapter 7: Separation of glycans and monosaccharides -- 7.1 Introduction -- 7.2 Types of Glycans -- 7.3 Analysis and Characterization of Glycans -- 7.3.1 Glycan Release -- 7.3.2 Fluorescent Labeling of Glycans -- 7.3.3 Hydrophilic Interaction Liquid Chromatography -- 7.3.4 Weak Anion-Exchange Liquid Chromatography -- 7.3.5 Exoglycosidase Sequencing -- 7.3.6 Reversed-Phase Liquid Chromatography -- 7.3.7 Porous Graphitic Carbon -- 7.4 Monosaccharide Composition Analysis. , 7.4.1 Hydrolysis of Monosaccharides -- 7.4.2 Labeling and Analysis of Monosaccharides -- 7.5 Conclusion -- References -- Chapter 8: Separation of lipids -- 8.1 Introduction and Contents -- 8.2 Definitions and Classification -- 8.3 Structures and Occurrence -- 8.3.1 Fatty Acids -- 8.3.2 Glycerolipids -- 8.3.3 Glycerophospholipids -- 8.3.4 Sphingolipids -- 8.3.5 Sterol Lipids -- 8.3.6 Prenol Lipids -- 8.3.7 Saccharolipids -- 8.3.8 Polyketides -- 8.4 Sample Handling and Extraction -- 8.4.1 Sampling and Sample Preparation -- 8.4.2 Soxhlet Extraction -- 8.4.3 Method of Folch, Lees, and Stanley -- 8.4.4 Method of Bligh and Dyer -- 8.4.5 Accelerated Solvent Extraction -- 8.4.6 Supercritical Fluid Extraction -- 8.4.7 Microwave-Assisted Extraction -- 8.4.8 Other Extraction Methods -- 8.5 Lipid Analysis by LC -- 8.5.1 Thin-Layer Chromatography -- 8.5.1.1 High-Performance and Two-Dimensional TLC -- 8.5.1.2 Detection and Quantification in TLC -- 8.5.2 High-Performance Liquid Chromatography -- 8.5.2.1 Normal-Phase Liquid Chromatography -- 8.5.2.2 Silver-Ion Liquid Chromatography -- 8.5.2.3 Non-aqueous Reversed-Phase Liquid Chromatography -- 8.5.2.4 Other HPLC Techniques -- 8.5.3 HPLC-MS Techniques -- 8.5.3.1 Lipidomics and Data Processing -- 8.5.4 Multidimensional Liquid Chromatography (MDLC, 2DLC) -- 8.6 Conclusions and Future Perspectives -- References -- Chapter 9: Metabolic phenotyping (metabonomics/metabolomics) by liquid chromatography-mass spectrometry -- 9.1 Introduction -- 9.2 LC-MS-based approaches to metabolic phenotyping -- 9.2.1 Reversed-Phase HPLC and U(H)PLC/MS for Metabolic Phenotyping -- 9.2.2 Polar Metabolite Analysis via HILIC, Aqueous Normal Phase (ANP), and Ion Chromatography(IC)/Ion Exchange (IE) LC-MS ... -- 9.2.3 Multicolumn and Multidimensional LC Separations -- 9.2.4 Miniaturization -- 9.3 Supercritical fluid chromatography (SFC). , 9.4 Ion Mobility Spectrometry -- 9.5 Conclusions -- References -- Chapter 10: Foodomics: LC and LC-MS-based omics strategies in food science and nutrition -- 10.1 Introduction -- 10.2 Fundamentals of omics approaches based on LC -- 10.2.1 Proteomics -- 10.2.2 Peptidomics -- 10.2.3 Metabolomics -- 10.2.4 Lipidomics -- 10.2.5 Glycomics -- 10.3 LC-based foodomics applications -- 10.3.1 Food Bioactivity -- 10.3.2 Food Safety -- 10.3.2.1 Chemical contaminants -- 10.3.2.2 Pathogens and toxins -- 10.3.2.3 Food allergens -- 10.3.3 Food Quality, Authenticity, and Traceability -- Acknowledgments -- References -- Chapter 11: Forensic toxicology -- 11.1 General drug screening -- 11.1.1 Extraction Techniques -- 11.1.2 Screening Using Diode Array Detection -- 11.2 Liquid chromatography-mass spectrometry: background and considerations -- 11.2.1 Atmospheric Pressure Ionization Sources: APCI, ESI -- 11.2.2 ESI and Mobile Phase pH -- 11.2.3 Atmospheric-Pressure Chemical Ionization -- 11.2.4 General Practical Considerations for LC-MS -- 11.3 Forensic toxicology LC-MS applications -- 11.3.1 Overview -- 11.3.2 Single Quadrupole Instruments -- 11.3.3 Time-of-Flight Instruments -- 11.3.4 Orbitrap Analysers -- 11.3.5 Low Resolution Ion Traps -- 11.3.6 Data Dependent Acquisition and Data Independent Acquisition for Broad Screening -- 11.4 LCMS identification criteria in forensic toxicology -- 11.4.1 The Continuing Relevance of Chromatography -- 11.4.2 MS Identification Criteria -- 11.5 Validation and matrix effects -- 11.5.1 Validation Requirements -- 11.5.2 Matrix Effects -- 11.6 Testing for driving under the influence of drugs using oral fluids -- 11.6.1 Analytical Methodology -- 11.6.2 Sample Preparation -- 11.6.3 LC-Tandem MS -- 11.6.4 Liquid Chromatography Analysis of Oral Fluid-Conclusions and Future Directions. , 11.7 Analysis of Novel Psychoactive Substances (NPS) in Forensic Toxicology.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Saint Louis :Elsevier,
    Keywords: Liquid chromatography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (810 pages)
    Edition: 2nd ed.
    ISBN: 9780128093450
    Series Statement: Handbooks in Separation Science Series
    DDC: 543/.84
    Language: English
    Note: Front Cover -- Liquid Chromatography: Fundamentals and Instrumentation -- Copyright -- Contents -- Contributors -- Chapter 1: Milestones in the development of liquid chromatography -- 1.1 Introduction -- 1.1.1 Developments Before 1960 -- 1.1.2 HPLC at the Beginning -- 1.2 HPLC Theory and Practice -- 1.2.1 New HPLC Modes and Techniques -- 1.2.2 Selection of Conditions for the Control of Selectivity -- 1.3 Columns -- 1.3.1 Particles and Column Packing -- 1.3.2 Stationary Phases and Selectivity -- 1.4 Equipment -- 1.5 Detectors -- Apologies and Acknowledgments -- References -- Further Reading -- Chapter 2: Kinetic theories of liquid chromatography -- 2.1 Introduction -- 2.2 Macroscopic Kinetic Theories -- 2.2.1 Lumped Kinetic Model -- 2.2.1.1 van Deemter plate height equation -- 2.2.2 General Rate Model -- 2.2.2.1 General rate model for monolith columns -- 2.2.2.2 General rate model for core-shell particles -- 2.2.2.3 Moment analysis -- 2.2.3 Lumped Pore Diffusion Model -- 2.2.4 Equivalence of the Macroscopic Kinetic Models -- 2.2.5 Kinetic Theory of Nonlinear Chromatography -- 2.3 Microscopic Kinetic Theories -- 2.3.1 Stochastic Model -- 2.3.1.1 Stochastic-dispersive model -- First passage time -- 2.3.2 Giddings Plate Height Equation -- 2.3.3 Monte Carlo Simulations of Nonlinear Chromatography -- 2.4 Comparison of the Microscopic and the Macroscopic Kinetic Models -- References -- Further Reading -- Chapter 3: Column technology in liquid chromatography -- 3.1 Introduction -- 3.2 Column Design and Hardware -- 3.2.1 Column History in Brief -- 3.2.2 Column Hardware -- 3.2.3 Column Miniaturization -- 3.3 Column Packing Materials and Stationary Phases -- 3.3.1 Terminology -- 3.3.2 Classification of LC Columns -- 3.3.3 Packing Materials [21] -- 3.3.3.1 Particle shape, size, and size distribution -- 3.3.3.2 Pore structure parameters. , 3.3.3.3 Surface functionalization of silica-the key to gaining selectivity -- 3.3.3.4 Surface functionalization of silica-the way to bonded silica columns -- 3.3.4 Major Synthesis Routes -- 3.3.4.1 Physicochemical characterization of bonded silica -- 3.3.4.2 Column packing procedures for analytical columns -- 3.3.4.3 Examples for selective bonded silica columns -- 3.3.4.4 The potential of multimodal or multifunctional bonded columns -- 3.4 Column Systems and Operations -- 3.4.1 Choice of Average Particle Size and Column Internal Diameter -- 3.4.2 Equilibration Time -- 3.4.3 Choice of Optimum-Flow Conditions -- 3.4.4 Column Back Pressure -- 3.4.5 Choice of Column Temperature -- 3.4.6 Column Capacity and Loadability -- 3.5 Chromatographic Column Testing and Evaluation -- 3.5.1 Chromatographic Testing -- 3.5.1.1 Hydrophobicity -- 3.5.1.2 Silanophilic activity -- 3.5.1.3 Polar selectivity -- 3.5.1.4 Shape selectivity -- 3.5.1.5 Metal content -- 3.6 Column Maintenance and Troubleshooting -- 3.6.1 Silica-Based Columns -- 3.6.1.1 General guidelines -- 3.6.2 pH Stability -- 3.6.3 Mechanical Stability -- 3.6.4 Mobile Phases (Eluents) -- 3.6.4.1 Proper storage of HPLC columns -- 3.6.4.2 Regeneration of a column -- 3.6.5 Regeneration of RP Packings -- 3.6.6 Polymer-Based Columns -- 3.6.6.1 General guidelines -- 3.6.7 Hydrophobic Unmodified Polystyrene-Divinylbenzene (Ps-Dvb) -- 3.6.8 Polymer-Based Ion-Exchangers -- 3.6.9 Regeneration of Polymer Materials -- 3.7 Today's Column Market-an Evaluation, Comparison, and Critical Appraisal -- 3.7.1 Development During 2000-16 -- 3.7.2 A Column Comparison -- 3.8 Conclusion: Where Do We Go Next? Science vs. Market -- References -- Chapter 4: Reversed-phase liquid chromatography -- 4.1 Introduction -- 4.2 General Features -- 4.2.1 Solvent Strength -- 4.2.2 Exothermodynamic Relationships. , 4.2.3 Thermodynamic Considerations -- 4.3 System Considerations -- 4.3.1 Interphase Model -- 4.3.2 Molecular Dynamics Simulations -- 4.4 Linear Free Energy Relationships -- 4.4.1 Solvation Parameter Model -- 4.4.1.1 Analysis of system constants -- 4.4.1.2 Pore dewetting -- 4.4.1.3 Steric resistance and shape selectivity -- 4.4.1.4 Electrostatic interactions -- 4.4.1.5 Gradient elution -- 4.4.2 Hydrophobic-Subtraction Model -- 4.5 Conclusions -- References -- Chapter 5: Secondary chemical equilibria in reversed-phase liquid chromatography -- 5.1 Introduction -- 5.2 Acid-Base Equilibria -- 5.2.1 Changes in Retention With pH -- 5.2.2 Buffers and Measurement of pH -- 5.3 Ion Interaction Chromatography -- 5.3.1 Retention Mechanism -- 5.3.2 Common Reagents and Operational Modes -- 5.3.3 Separation of Inorganic Anions -- 5.3.4 The Silanol Effect and Its Suppression With Amine Compounds -- 5.3.5 Use of Perfluorinated Carboxylate Anions and Chaotropic Ions as Additives -- 5.3.6 Use of ILs as Additives -- 5.3.7 Measurement of the Enhancement of Column Performance Using Additives -- 5.4 Micellar Liquid Chromatography -- 5.4.1 An Additional Secondary Equilibrium in the Mobile Phase -- 5.4.2 Hybrid Micellar Liquid Chromatography -- 5.4.3 Microemulsion Liquid Chromatography -- 5.5 Metal Complexation -- 5.5.1 Determination of Metal Ions -- 5.5.2 Determination of Organic Compounds -- 5.6 Use of Redox Reactions -- References -- Chapter 6: Hydrophilic interaction liquid chromatography -- 6.1 Introduction -- 6.2 Principles of HILIC -- 6.2.1 Thermodynamics of Adsorption -- 6.2.2 Adsorption Kinetics -- 6.3 Stationary and mobile phases commonly employed in HILIC -- 6.3.1 Stationary Phases -- 6.3.1.1 Silica gel -- 6.3.1.2 Chemically bonded phases -- 6.3.1.3 Ion exchange and zwitterionic stationary phase -- 6.3.1.4 Hydrophilic macromolecules bonded phases. , 6.3.1.5 Surface-confined ionic liquids stationary phases -- 6.3.2 Mobile Phases -- 6.4 Applications -- References -- Chapter 7: Hydrophobic interaction chromatography* -- 7.1 Introduction -- 7.2 Hydrophobic Interactions and Retention Mechanisms in HIC -- 7.2.1 Hydrophobic Interactions -- 7.2.2 Retention Mechanisms in HIC -- 7.3 Parameters That Affect HIC -- 7.3.1 Stationary Phase -- 7.3.1.1 Base matrix -- 7.3.1.2 Ligands -- 7.3.2 Mobile Phase -- 7.3.2.1 Type and concentration of salt -- 7.3.2.2 pH -- 7.3.2.3 Additives -- 7.3.2.4 Temperature -- 7.3.3 Biomolecules Hydrophobicity -- 7.4 Purification Strategies -- 7.5 Experimental Considerations -- 7.6 Recent Selected Applications -- 7.7 Conclusions -- References -- Chapter 8: Liquid-solid chromatography -- 8.1 Introduction -- 8.2 Retention and Separation -- 8.2.1 The Retention Process ("Mechanism") -- 8.2.2 Solute and Solvent Localization -- 8.2.3 Selectivity -- 8.3 Method Development -- 8.3.1 Thin-Layer Chromatography -- 8.3.2 Selection of the Mobile Phase -- 8.3.3 Example of Method Development -- 8.4 Problems in the Use of Normal-Phase Chromatography -- References -- Further Reading -- Chapter 9: Ion chromatography -- 9.1 Introduction -- 9.1.1 Definitions -- 9.1.2 History -- 9.2 Basic Principles and Separation Modes -- 9.2.1 Ion-Exchange Chromatography -- 9.2.2 Ion-Exclusion Chromatography -- 9.2.3 Chelation Ion Chromatography -- 9.2.4 Zwitterionic Ion Chromatography -- 9.2.5 Eluents for IC -- 9.2.5.1 Typical eluents for anion exchange -- 9.2.5.2 Typical eluents for cation exchange -- 9.3 Instrumentation -- 9.3.1 IC Columns -- 9.3.1.1 Anion-exchange columns -- 9.3.1.2 Cation-exchange columns -- 9.3.2 Eluent Generators -- 9.3.3 Detection in IC -- 9.3.3.1 Conductimetric detection -- Nonsuppressed conductivity -- Suppressed conductivity -- 9.3.3.2 Electrochemical detection -- Charge detector. , Amperometry -- 9.3.3.3 Spectroscopic detection -- Photometric detection -- Postcolumn reaction detection -- 9.3.3.4 Mass spectrometry -- 9.4 Applications -- 9.4.1 Industrial Applications -- 9.4.2 Environmental Applications -- References -- Further Reading -- Chapter 10: Size-exclusion chromatography -- 10.1 Introduction -- 10.2 Historical Background -- 10.3 Retention in SEC -- 10.3.1 A Size-Exclusion Process -- 10.3.2 An Entropy-Controlled Process -- 10.3.3 An Equilibrium Process -- 10.4 Band Broadening in SEC -- 10.4.1 Extra-column effects -- 10.5 Resolution in SEC -- 10.6 SEC Enters the Modern Era: The Determination of Absolute Molar Mass -- 10.6.1 Universal Calibration and Online Viscometry -- 10.6.2 SLS Detection -- 10.7 Multidetector Separations, Physicochemical Characterization, 2D Techniques -- 10.8 Conclusions -- Acknowledgment and Disclaimer -- References -- Chapter 11: Interaction polymer chromatography -- 11.1 Introduction -- 11.2 Fundamentals of ipc -- 11.2.1 Retention Mechanisms -- 11.2.2 Thermodynamics of Polymer Chromatography -- 11.2.3 Modes of Polymer Chromatography -- 11.2.4 Modeling of the Chromatographic Process -- 11.3 Individual IPC Techniques -- 11.3.1 Equipment and Chromatographic Media -- 11.3.2 Nomenclature -- 11.3.3 Isocratic Techniques -- 11.3.3.1 Liquid chromatography at critical conditions -- 11.3.3.2 Barrier techniques -- 11.3.4 Gradient Techniques -- 11.3.4.1 Liquid adsorption chromatography -- 11.3.4.2 Gradient elution at CPA -- 11.3.4.3 Liquid precipitation chromatography -- 11.3.4.4 Temperature gradient interaction chromatography -- 11.4 Conclusion -- References -- Chapter 12: Affinity chromatography -- 12.1 Introduction -- 12.2 Basic Components of Affinity Chromatography -- 12.3 Bioaffinity Chromatography -- 12.4 Immunoaffinity Chromatography -- 12.5 Dye-Ligand and Biomimetic Affinity Chromatography. , 12.6 Immobilized Metal-Ion Affinity Chromatography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (473 pages)
    Edition: 1st ed.
    ISBN: 9780128003015
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Detection of Metastable Atoms and Molecules using Rare Gas Matrices -- 1. Introduction -- 2. Basic Concepts -- 2.1 Relevant Background -- 2.2 Principle of Operation of the Detector -- 3. Experimental Details -- 3.1 TOF Spectroscopy -- 3.2 Apparatus Details -- 3.3 Apparatus Performance -- 3.3.1 Spectral Output -- 3.3.2 Temperature Variation -- 3.3.3 Excimer Lifetimes -- 4. Calibrations -- 4.1 Calibration of O(1S) Production -- 4.2 Calibration of O(1D) Production -- 4.2 Calibration of the Electron Energy Scale -- 5. O(1S) Measurements -- 5.1 O2 -- 5.2 N2O -- 5.3 CO2 -- 5.4 CO -- 5.5 NO -- 5.6 H2O, D2O -- 5.7 SO2 -- 6. O(1D) Measurements -- 7. Sulfur Measurements -- 8. CO Measurements -- 9. Future Possibilities -- References -- Chapter Two: Interactions in Ultracold Rydberg Gases -- 1. Introduction -- 2. Pair Interactions -- 2.1 Rydberg Pair Interaction and Important Issues -- 2.2 Calculation of Rydberg Pair Interactions -- 2.3 Angular Dependence -- 2.4 Experiments -- 3. Rydberg Atom Molecules -- 3.1 Trilobite Molecules -- 3.1.1 The Fermi Pseudo-Potential Picture of Trilobite Molecules -- 3.1.2 The Multichannel Quantum Defect Approach to Trilobite Molecules -- 3.1.3 External Fields -- 3.1.4 Features of the Trilobite Interaction Potentials -- 3.1.5 Molecular Frame Permanent Dipole Moments -- 3.1.6 Experimental Measurement of Trilobite Molecules -- 3.2 Macrodimers -- 3.2.1 Theory of Macrodimers -- 3.2.2 Experimental Detection of Macrodimers -- 4. Many-Body and Multiparticle Effects -- 4.1 Förster Resonance -- 4.2 Dipole Blockade -- 5. Conclusion and Perspectives -- Chapter Three: Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization -- 1. Introduction. , 1.1 The Expanding Universe -- 1.2 The Thermal History of the Universe -- 1.3 The Need for Dark Matter -- 1.4 The Role of AMO Physics -- 1.5 Distance Measurements -- 1.6 Acronyms and Variables -- 2. Cosmological Recombination -- 2.1 What Is Cosmological Recombination All About? -- 2.1.1 Initial Conditions and Main Aspect of the Recombination Problem -- 2.1.2 The Three Stages of Recombination -- 2.1.3 What Is So Special About Cosmological Recombination? -- 2.2 Why Should We Bother? -- 2.2.1 Importance of Recombination for the CMB Anisotropies -- 2.2.2 Spectral Distortions from the Recombination Era -- 2.3 Why Do We Need Advanced Atomic Physics? -- 2.4 Simple Model for Hydrogen Recombination -- 2.5 Multilevel Recombination Model and Recfast -- 2.6 Detailed Recombination Physics During Hi Recombination -- 2.6.1 Two-Photon Transitions from Higher Levels -- 2.6.2 The Effect of Raman Scattering -- 2.6.3 Additional Small Corrections and Collision -- 2.7 Detailed Recombination Physics During Hei Recombination -- 2.8 HyRec and CosmoRec -- 3. Pregalactic Gas Chemistry -- 3.1 Fundamentals -- 3.2 Key Reactions -- 3.2.1 Molecular Hydrogen (H2) -- 3.2.2 Deuterated Molecular Hydrogen (HD) -- 3.2.3 Lithium Hydride -- 3.3 Complications -- 3.3.1 Spectral Distortion of the CMB -- 3.3.2 Stimulated Radiative Association -- 3.3.3 Influence of Rotational and Vibrational Excitation -- 4. Population III Star Formation -- 4.1 The Assembly of the First Protogalaxies -- 4.2 Gravitational Collapse and Star Formation -- 4.2.1 The Initial Collapse Phase -- 4.2.2 Three-Body H2 Formation -- 4.2.3 Transition to the Optically Thick Regime -- 4.2.4 Cooling at Very High Densities -- 4.2.5 Influence of Other Coolants -- 4.3 Evolution After the Formation of the First Protostar -- 5. The 21-cm Line of Atomic Hydrogen -- 5.1 Physics of the 21-cm Line -- 5.1.1 Basic 21-cm Physics. , 5.1.2 Collisional Coupling -- 5.1.3 Wouthuysen-Field Effect (Photon Coupling) -- 5.2 Global 21-cm Signature -- 5.2.1 Cosmic Dark Ages and Exotic Heating (zbold0mu mumu dotted40) -- 5.2.2 Lyman-α Coupling (zα z z ) -- 5.2.3 Gas Heating (zh z zα) -- 5.2.4 Growth of H II Regions (zr z zh) -- 5.2.5 Astrophysical Sources and Histories -- 5.3 21-cm Tomography -- 5.3.1 Fluctuations in the Spin Temperature -- 5.3.2 Gas Temperature -- 5.3.3 Ionization Fluctuations -- 5.3.4 Density and Minihalos -- 5.3.5 Redshift Space Distortions -- 6. The Reionization of Intergalactic Hydrogen -- 6.1 Sources of Reionization: Stars -- 6.2 Sources of Reionization: Quasars -- 6.2.1 Secondary Ionizations -- 6.3 The Growth of Ionized Bubbles -- 6.3.1 Photoionization Rates and Recombinations -- 6.3.2 Line Cooling -- 6.4 Reionization as a Global Process -- 7. Summary -- Appendix A. Acronyms -- Appendix B. Symbols -- Chapter Four: Atomic Data Needs for Understanding X-ray Astrophysical Plasmas -- 1. Introduction -- 2. Charge State Distribution -- 2.1 Ionization Processes -- 2.1.1 Collisional Ionization -- 2.1.2 Photoionization -- 2.1.3 Auger Ionization -- 2.2 Recombination -- 2.2.1 Dielectronic Recombination -- 2.2.2 Radiative Recombination -- 2.3 Charge Exchange -- 2.4 Future Needs -- 3. Spectral Features -- 3.1 Energy Levels and Wavelengths -- 3.2 Collisional Excitation Rates -- 3.2.1 H-Like Ions -- 3.2.2 He-Like Ions -- 3.2.3 Neon-Like Ions -- 3.2.4 Other Ions -- 3.3 Radiative Transition Rates (Bound-Bound) -- 3.4 Photoionization/Absorption (Bound-Free) Rates -- 3.5 Fluorescent Innershell Transitions -- 3.6 Charge Exchange Rates -- 3.6.1 Atoms and Ions -- 3.6.2 Molecules and Grains -- 4. Conclusions -- Chapter Five: Energy Levels of Light Atoms in Strong Magnetic Fields -- 1. Introduction -- 2. Historical Background -- 3. The Lightest ``Light'' Atom-Hydrogen. , 4. Light Atoms: Two and Few-Electron Systems -- 5. Concluding Remarks and Future Prospects -- Chapter Six: Quantum Electrodynamics of Two-Level Atoms in 1D Configurations -- 1. Introduction -- 2. The 1D Kernel and Its Spectral Decomposition -- 2.1 Form of the Lienard-Wiechert Kernel in 1D (Friedberg and Manassah, 2008c) -- 2. 2 Initial Time CDR and CLS of a Slab (Friedberg et al., 1973) -- 2.3 Eigenfunctions and Eigenvalues of a Slab (Friedberg and Manassah, 2008c,d,e) -- 2.3.1 Functional Form of the Eigenfunctions -- 2.3.2 Pseudo-Orthogonality Relations -- 2.3.2.1 Odd Eigenfunctions -- 2.3.2.1 Even Eigenfunctions -- 2.3.3 Parseval´s Identity -- 2.4 Differential Form of the Field Equation (Friedberg and Manassah, 2008c) -- 2.5 Inverted System in the Superradiant Linear Regime (Friedberg and Manassah, 2008e) -- 2.6 Comments on the Numerical Results of Superradiance from a Slab -- 3. Propagation of an Ultrashort Pulse in a Slab and the Ensuing Emitted Radiation Spectrum -- 3.1 Time Development and Spectrum of the Radiation Emitted -- 3.1.1 Spectral Analysis (Friedberg and Manassah, 2008d, 2009b) -- 3.1.2 Computation of the Electric Field at the End Planes -- 3.2 The SVEA Closed-Form Expressions (Manassah, 2012a) -- 3.3 The Modified SVEA Closed-Form Expressions (Manassah, 2012b) -- 3.4 Self-Energy of an Initially Detuned Phased State (Friedberg and Manassah, 2010a) -- 3.5 Spectral Distribution of an Initially Detuned Spatial Distribution -- 4. Near-Threshold Behavior for the Pumped Stationary State -- 4.1 Coupled Maxwell-Bloch Equations -- 4.2 Single-Frequency Lasing -- 4.2.1 Single-Frequency Bare Mode -- 4.2.2 Single-Frequency Dressed Mode -- 4.3 Two-Frequency Bare Modes -- 4.4 General Comments -- 5. Polariton-Plasmon Coupling, Transmission Peaks, and Purcell-Dicke Ultraradiance -- 5.1 The Total Transfer Matrix -- 5.2 The Mittag-Leffler Expansion. , 5.3 Interacting Polariton-Plasmon Modes -- 6. Periodic Structures -- 6.1 Density-Modulated Slab (Manassah, 2012e) -- 6.1.1 The Self-Energy at Initial Time -- 6.1.2 Simple Mathematical Analysis for the Giant Shifts -- 6.2 Periodic Multislabs Eigenvalues (Friedberg and Manassah, 2008f) -- 6.2.1 Eigenvalue Condition -- 6.2.2 Precocious Superradiance -- 6.2.3 Eigenvalues at the Bragg Condition as a Function of the Number of Cells -- 7. Conclusion -- Acknowledgments -- Appendix. Transfer Matrix Formalism -- Some Useful Relations of the Pauli Matrices -- Example of an Application of Above Formalism -- References -- Index -- Contents of volumes in this serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (365 pages)
    Edition: 1st ed.
    ISBN: 9780080880273
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front cover -- Half title -- Editors -- Title -- Copyright -- Contents -- Contributors -- Chapter 1. Ionizing Collisions by Positrons and Positronium Impact on the Inert Atoms -- Introduction -- Ion Production by Positron Impact -- Experimental Methods for Integral Cross-Sections -- Total Ionization Cross-Sections -- Direct Ionization -- Positronium Formation -- Positronium Ionizing Collisions -- Background -- Experimental Methods -- Results -- Conclusions and Outlook -- Acknowledgments -- References -- Chapter 2. Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole--Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy -- Introduction -- Detection of Quantum Beating in Atoms and Molecules by Wavepacket Interferometry and a Coherent Nonlinear Optical Process -- Historical Background, Wavepacket Detection -- Brief Review of Theory -- Experimental Arrangement and Data Acquisition -- Rb Wavepackets: Quantum Beating at 2--18.2 THz -- Na 5s--4d5 / 2 Quantum Beating at 1348 cm-1 (40.41 THz) -- PFWM and PSWM in Other Atoms and Molecules -- Many-Body, Dipole--Dipole Interactions Among Excited Alkali Atoms -- Introductory Comments -- Estimates of Many-Body Interaction Energies -- Experimental Results: Sideband Splittings Observed in the Fourier and Temporal Domains -- Impact of the Pair Distribution Function -- Observation of Molecular Dissociation and Nascent Product State Distributions by the Dipole--Dipole Interaction -- Introduction -- Electronic Structure and Predissociation of Rb2: Generation of Excited Atomic Fragments -- Molecular Dissociation Transients, Atomic Product State Distributions -- Diffusion Description of Amplitude Transients -- Dominant Rb2 Predissociation Channels -- Coherent Control of R b 2 Predissociation. , Photoassociation of Rare-Gas--Halogen Atomic Pairs at Ambient Temperature -- Introduction, Stationary Phase Approximation -- Theoretical Considerations -- Simulations and Derived Xenon Monoiodide Spectroscopic Constants -- Application of Photoassociation to High Intensity Discharge Lighting -- Summary and Conclusions -- Acknowledgments -- References -- Chapter 3. Bose--Einstein Condensates in Disordered Potentials -- Introduction -- How to Produce a Disordered Potential -- Speckle Patterns -- Multi-chromatic Lattices -- Other Methods -- Weakly-interacting Regime -- A Bose--Einstein Condensate in a Disordered Potential -- The Quest for Anderson Localization -- Further Directions -- Observing Anderson Localization -- Strongly-interacting Regime -- The Quest for Bose Glass -- Experiments with Atomic Mixtures -- Conclusions -- Acknowledgments -- References -- Chapter 4. Dipole--Dipole Interactions of Rydberg Atoms -- Introduction -- Principles of Resonant Dipole--Dipole Collisions -- Dipole Transitions in Rydberg Atoms -- Dipole--Dipole Interactions -- Verification of the Predictions -- Manipulating Resonant Collisions -- Dipole--dipole Interactions in the Frozen Rydberg Gas -- Line Broadening and Blockades -- Mechanical Effects -- Conclusion -- Acknowledgments -- References -- Chapter 5. Strong-Field Control of X-Ray Processes -- Motivation -- Basic concepts -- Basic X-Ray Processes -- Strong-Field Laser Physics -- Theoretical aspects -- Strong-Field Ionization -- Laser Dressing -- Laser-Induced Molecular Alignment -- General experimental considerations -- Case studies -- Orbital Alignment in Strong-Field Ionization -- Electromagnetically-Induced Transparency -- Laser-Induced Molecular Alignment -- Summary and outlook -- Acknowledgments -- References -- Chapter 6. Optical Trapping Takes Shape: The Use of Structured Light Fields -- Introduction. , Single beam optical tweezers -- Optical Tweezers: Theoretical Treatment of Trapping Forces -- Design Considerations of an Optical Tweezers System -- Other Incarnations of Optical Trapping -- Applications within biophysics and the colloidal sciences -- Molecular and Cell Biology -- Examples of Studies of Colloidal Systems with Single Beam Optical Tweezers -- Optical trapping with structured light fields and its applications -- Structured Light Fields -- Large Arrays of Optical Traps -- Non-zero Order Laser Modes -- Optical binding -- Conclusions -- Acknowledgments -- References -- Index -- Contents of volumes in this serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nuclear physics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (605 pages)
    Edition: 1st ed.
    ISBN: 9780123965370
    Series Statement: Issn Series
    DDC: 539
    Language: English
    Note: Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Editorial Board -- Copyright -- Table of Contents -- Contributors -- Preface -- Engineered Open Systems and Quantum Simulations with Atoms and Ions -- 1. Introduction -- 2. Digital Quantum Simulation with Trapped Ions and Rydberg Atoms -- 2.1 Concepts and First Experiments with Trapped Ions -- 2.1.1 The Digital Simulation Method -- 2.1.2 Coherent Digital Simulation with Trapped Ions -- 2.2 Scalable Quantum Simulation with Rydberg Atoms -- 2.2.1 Paradigmatic Example: Simulation of Kitaev's Toric Code Hamiltonian -- 2.2.2 A Mesoscopic Rydberg Gate -- 2.2.3 Simulation of Coherent Many-Body Interactions -- 2.3 Digital Simulation of Open-System Dynamics -- 2.3.1 Bell State Pumping -- 2.3.2 Stabilizer Pumping and Ground State Cooling of the Toric Code Hamiltonian -- 2.3.3 Digital Simulation of a U(1) Lattice Gauge Theory -- 2.4 The Effect of Gate Imperfections on Digital Quantum Simulation -- 3. Engineered Open Systems with Cold Atoms -- 3.1 Long-Range Order via Dissipation -- 3.1.1 Driven-Dissipative BEC -- 3.1.2 Implementation with Cold Atoms -- 3.2 Competition of Unitary and Dissipative Dynamics in Bosonic Systems -- 3.2.1 Dynamical Phase Transition -- 3.2.2 Critical Behavior in Time -- 3.2.3 Dynamical Instability and Spontaneous Translation Symmetry Breaking -- 3.3 Dissipative d-Wave Paired States for Fermi-Hubbard Quantum Simulation -- 3.3.1 Dissipative Pairing Mechanism -- 3.3.2 Dissipative Gap -- 3.3.3 State Preparation -- 3.4 Dissipative Topological States of Fermions -- 3.4.1 Dissipative Topological Quantum Wire -- 3.4.2 Nonabelian Character of Dissipative Majorana Modes -- 3.4.3 Topological Order in Density Matrices -- 3.4.4 Physical Implementation -- 4. Outlook -- Acknowledgments -- References -- Entanglement of Two Atoms Using Rydberg Blockade -- 1. Introduction. , 2. Entanglement Using Rydberg Blockade -- 3. Trapping and Readout of Single Atoms -- 3.1 Optical Traps -- 3.2 Detection of Single Atoms and Quantum States -- 3.3 Single-Atom State Detection -- 3.4 Optical Trap Effects on Rydberg Atoms -- 4. State Preparation -- 4.1 Optical Pumping -- 4.2 Single Qubit Rotations -- 5. Coherent Rydberg Rabi Flopping -- 6. Rydberg Blockade -- 7. CNOT Gate -- 8. Entanglement Verification -- 9. Future Improvements -- 9.1 Deterministic Loading of Optical Lattices -- 9.2 Advantages of Dark FORTs -- 9.3 Two-Photon Excitation Via the Alkali Second Resonance -- 9.4 Improved FORT Decoherence -- 9.5 Fundamental Limits -- Acknowledgments -- References -- Atomic and Molecular Ionization Dynamics in Strong Laser Fields: From Optical to X-rays -- 1. Introduction -- 2. The First 30 Years of Multiphoton Physics (1963-1993) -- 2.1 The Genesis of a Field: The Early Days -- 2.2 Resonant Multiphoton Ionization (MPI) -- 2.3 Coherence -- 2.4 Non-Resonant MPI -- 2.5 Above-Threshold Ionization (ATI): Doorway into the Modern Era -- 2.6 Non-Perturbative ATI -- 2.7 Rydberg Resonances and the Role of Atomic Structure -- 2.8 Multiple Ionization, Anne's Knee, and the Lambropoulos Curse -- 2.9 Keldysh Tunneling: Different Mode of Ionization -- 2.10 Long Wavelength Ionization and the Classical View -- 2.11 High Harmonics, High-Order ATI and Nonsequential Ionization Lead to the Rescattering/Three-Step Model -- 2.12 Adiabatic Stabilization -- 3. Wavelength Scaling of Strong-Field Atomic Physics -- 3.1 Fundamental Metrics in an Intense Laser-Atom Interaction -- 3.2 Ionization Experiments in the Strong-Field Limit -- 4. Low-Energy Structure in Photoelectron Energy Distribution in the Strong-Field Limit -- 5. Electron Momentum Distribution and Time-Dependent Imaging -- 5.1 Extracting the Molecular Structure from LIED. , 5.1.1 Method for Retrieving the Internuclear Distance -- 5.1.2 Control of the Bond Length Time Dependence -- 6. Non-Sequential Multiple Ionization at Long Wavelengths -- 7. Strong-Field X-ray Physics: A Future Path -- 8. Outlook -- Acknowledgments -- References -- Frontiers of Atomic High-Harmonic Generation -- 1. Introduction -- 2. Fundamental Concepts of HHG and Attosecond Pulses -- 2.1 Lewenstein Model and Phenomenology -- 2.2 Interference Model of HHG -- 2.3 Continuum-Continuum HHG -- 2.3.1 CC HHG with a Single Continuum Wave Packet -- 2.3.2 CC HHG with a Rydberg State -- 2.3.3 CC HHG with Two Continuum Wave Packets -- 2.4 Experimental Advances -- 2.4.1 Demonstration of HHG Spectral Coherence and Attosecond Pulsed Nature -- 2.4.2 Few-Cycle and CEP Control Technology -- 2.4.3 HHG Gating Techniques -- 3. Hard X-ray HHG and Zeptosecond Pulses -- 3.1 HHG with Long-Wavelength Drivers -- 3.2 Relativistic Regime of HHG -- 3.3 XUV-Assisted HHG -- 3.4 Exotic Light Sources -- 4. HHG in Shaped Driving Pulses -- 4.1 HHG Yield and Cutoff Enhancement -- 4.2 Attosecond Pulse Shaping -- 5. Experimental Applications -- 5.1 Photoelectron Spectroscopy Methods for Time-Resolving Ionization Dynamics -- 5.2 HHG Recollision Spectroscopy for Measuring Electronic Wavepackets in Molecules -- 5.3 Attosecond Transient Absorption for Observing Bound-Electron Wavepackets -- 6. Outlook -- References -- Teaching an Old Dog New Tricks: Using the Flowing Afterglow to Measure Kinetics of Electron Attachment to Radicals, Ion-Ion Mutual Neutralization, and Electron Catalyzed Mutual Neutralization -- 1. Brief History of Ion Flow Tube Apparatuses -- 2. Electron Attachment Using the Traditional FALP Technique -- 3. VENDAMS Method -- 3.1 Background -- 3.2 Fundamentals of the VENDAMS Technique -- 3.3 Analysis, Uncertainties, and Sensitivity -- 4. Electron Attachment to Transient Species. , 4.1 Theory of Electron Attachment -- 4.1.1 Electron Capture Models -- 4.1.2 Electron Detachment Models -- 4.1.3 Anion Fragmentation Models -- 4.1.4 Collisional (and Radiative) Deactivation and Collisional Activation of Anions -- 4.2 VENDAMS Measurements of Electron Attachment to Transient Species -- 4.2.1 Electron Attachment to Fluorocarbon Radicals -- 4.2.2 Electron Attachment to Sulfur Fluorides, SFn (n=2-6) -- 4.2.3 Electron Attachment to Iron Carbonyls, Fe(CO)n (n = 0-5) -- 4.2.4 Electron attachment to PSCl2 -- 4.2.5 Summary of VENDAMS Studies of Electron Attachment -- 5. Mutual Neutralization of Anion-Cation Pairs -- 5.1 Rate Coefficients for MN -- 5.2 Neutral Products of MN -- 5.2.1 Earlier Experiments on MN Products -- 5.2.2 VENDAMS Results for MN Products -- 6. Electron Catalyzed Mutual Neutralization -- 7. Concluding Remarks -- Acknowledgments -- References -- Superradiance: An Integrated Approach to Cooperative Effects in Various Systems -- 1. Introduction -- 1.1 Dicke Superradiance -- 2. Model -- 3. Cooperative Effects in a Homogeneous Gas of Two-Level Atoms -- 3.1 Closed Form -- 3.1.1 Superradiant Decay Rates -- 3.2 Basic Parameters of Superradiance -- 3.3 Simulation of Cooperative Phenomena -- 4. Correlation and Entanglement -- 5. Doppler Broadening -- 6. Multi-Level Cascade -- 6.1 Multi-Level Model -- 6.1.1 Generalized Dicke Model -- 6.1.2 Effective Two-Body Formalism -- 6.2 Radiation Intensity -- 6.3 Atom-Atom Correlation -- 7. Conclusion -- Acknowledgements -- References -- Construction of the Resolvent for a Few-Body System -- 1. Introduction -- 2. Scattering Amplitude and the Resolvent -- 3. Resolvent -- Preliminary Considerations -- 3.1 Exponential Cutoff of the Energy Spectrum -- 3.2 Off- and On-Shell Parts -- 4. Evolution of a Free-particle Wavepacket -- 4.1 Gaussian Wavepacket -- 4.2 Exponential Wavepacket -- 5. Regularization. , 6. Basis Functions -- 7. Correlation Amplitude -- 7.1 Analytic Properties of C(t) -- Heuristic Discussion -- 7.2 Asymptotic Behavior of C(t) -- 7.3 Examples -- 8. Time-Translation Operator -- 8.1 Conformal Transformation -- 8.2 Truncation Error -- 8.3 Boundary Condition at t=0 -- 8.4 Summation Over Large n -- 9. Resolvent -- 9.1 Coefficients -- 9.2 Summation -- 9.3 Reduction to the Free-Body Resolvent -- 9.4 Remarks -- 10. Example -- 10.1 AC Stark Width and Shift -- 10.2 Velocity Gauge -- 10.3 Fermi's Golden Rule -- Acknowledgments -- 11. Appendices -- 11.1 Computation of Integrals -- 11.1.1 int0inftyrm dr L(nu)m(r2)L(nu)n(r2)rm e-r2-ar -- 11.1.2 int0inftyhboxdr L(nu)m(2r2)L(nu)n(br)hboxe-r2-ar -- 11.2 Evaluation of sumn=N+1infty Ln-1(1)(2z)un/nm -- 11.3 Integral Representation of the Correlation Amplitude -- References -- Beyond the Rayleigh Limit in Optical Lithography -- 1. Introduction -- 2. Classical Photolithography and the Diffraction Limit -- 2.1 Mask-Based Photolithography -- 2.2 Classical Interferometric Lithography -- 3. Classical Multi-Photon Lithography -- 4. Quantum Interferometric Optical Lithography -- 4.1 Entanglement Helps to Break the Diffraction Limit -- 4.2 A Proof-of-Principle Experiment for Quantum Interferometric Photolithography -- 5. Subwavelength Interferometric Lithography Via Classical Light -- 5.1 Nonlinear Interferometric Optical Lithography by Controlling the Phase -- 5.2 Subwavelength Lithography by Coherent Control of Classical Light Pulses -- 5.3 Subwavelength Lithography Via Correlating Wave Vector and Frequency -- 5.3.1 Illustrative Calculation for the Case N=2 -- 5.3.2 Generalization to N Photons -- 5.3.3 Generation of Arbitrary Patterns -- 6. Resonant Subwavelength Lithography Via Dark State -- 6.1 Three-Level Λ Type System -- 6.2 Generalization to 2×Λ System -- 6.3 Generalization to N ×Λ System. , 6.4 Some Concerns.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford :Oxford University Press, Incorporated,
    Keywords: Conservation biology. ; Biodiversity. ; Electronic books.
    Description / Table of Contents: Conservation Biology for All provides cutting-edge but basic conservation science to a global readership. A series of authoritative chapters have been written by the top names in conservation biology with the principal aim of disseminating cutting-edge conservation knowledge as widely as possible.
    Type of Medium: Online Resource
    Pages: 1 online resource (369 pages)
    Edition: 1st ed.
    ISBN: 9780191574252
    DDC: 333.9516
    Language: English
    Note: Intro -- Contents -- Dedication -- Acknowledgements -- List of Contributors -- Introduction -- Introduction Box 1: Human population and conservation -- Introduction Box 2: Ecoethics -- 1: Conservation biology: past and present -- 1.1 Historical foundations of conservation biology -- Box 1.1: Traditional ecological knowledge and biodiversity conservation -- 1.2 Establishing a new interdisciplinary field -- 1.3 Consolidation: conservation biology secures its niche -- 1.4 Years of growth and evolution -- Box 1.2: Conservation in the Philippines -- 1.5 Conservation biology: a work in progress -- Summary -- Suggested reading -- Relevant websites -- 2: Biodiversity -- 2.1 How much biodiversity is there? -- 2.2 How has biodiversity changed through time? -- 2.3 Where is biodiversity? -- 2.4 In conclusion -- Box 2.1: Invaluable biodiversity inventories -- Summary -- Suggested reading -- Revelant websites -- 3: Ecosystem functions and services -- 3.1 Climate and the Biogeochemical Cycles -- 3.2 Regulation of the Hydrologic Cycle -- 3.3 Soils and Erosion -- 3.4 Biodiversity and Ecosystem Function -- Box 3.1: The costs of large-mammal extinctions -- Box 3.2: Carnivore conservation -- Box 3.3: Ecosystem services and agroecosystems in a landscape context -- 3.5 Mobile Links -- Box 3.4: Conservation of plant-animal mutualisms -- Box 3.5: Consequences of pollinator decline for the global food supply -- 3.6 Nature's Cures versus Emerging Diseases -- 3.7 Valuing Ecosystem Services -- Summary -- Relevant websites -- Acknowledgements -- 4: Habitat destruction: death by a thousand cuts -- 4.1 Habitat loss and fragmentation -- 4.2 Geography of habitat loss -- Box 4.1: The changing drivers of tropical deforestation -- 4.3 Loss of biomes and ecosystems -- Box 4.2: Boreal forest management: harvest, natural disturbance, and climate change. , 4.4 Land-use intensification and abandonment -- Box 4.3: Human impacts on marine ecosystems -- Summary -- Suggested reading -- Relevant websites -- 5: Habitat fragmentation and landscape change -- 5.1 Understanding the effects of landscape change -- 5.2 Biophysical aspects of landscape change -- 5.3 Effects of landscape change on species -- Box 5.1: Time lags and extinction debt in fragmented landscapes -- 5.4 Effects of landscape change on communities -- 5.5 Temporal change in fragmented landscapes -- 5.6 Conservation in fragmented landscapes -- Box 5.2: Gondwana Link: a major landscape reconnection project -- Box 5.3: Rewilding -- Summary -- Suggested reading -- Relevant websites -- 6: Overharvesting -- 6.1 A brief history of exploitation -- 6.2 Overexploitation in tropical forests -- 6.3 Overexploitation in aquatic ecosystems -- 6.4 Cascading effects of overexploitation on ecosystems -- Box 6.1: The state of fisheries -- 6.5 Managing overexploitation -- Box 6.2: Managing the exploitation of wildlife in tropical forests -- Summary -- Relevant websites -- 7: Invasive species -- Box 7.1: Native invasives -- Box 7.2: Invasive species in New Zealand -- 7.1 Invasive species impacts -- 7.2 Lag times -- 7.3 What to do about invasive species -- Summary -- Suggested reading -- Relevant websites -- 8: Climate change -- 8.1 Effects on the physical environment -- 8.2 Effects on biodiversity -- Box 8.1: Lowland tropical biodiversity under global warming -- 8.3 Effects on biotic interactions -- 8.4 Synergies with other biodiversity change drivers -- 8.5 Mitigation -- Box 8.2: Derivative threats to biodiversity from climate change -- Summary -- Suggested reading -- Relevant websites -- 9: Fire and biodiversity -- 9.1 What is fire? -- 9.2 Evolution and fire in geological time -- 9.3 Pyrogeography -- Box 9.1: Fire and the destruction of tropical forests. , 9.4 Vegetation-climate patterns decoupled by fire -- 9.5 Humans and their use of fire -- Box 9.2: The grass-fire cycle -- Box 9.3: Australia's giant fireweeds -- 9.6 Fire and the maintenance of biodiversity -- 9.7 Climate change and fire regimes -- Summary -- Suggested reading -- Relevant websites -- Acknowledgements -- 10: Extinctions and the practice of preventing them -- 10.1 Why species extinctions have primacy -- Box 10.1: Population conservation -- 10.2 How fast are species becoming extinct? -- 10.3 Which species become extinct? -- 10.4 Where are species becoming extinct? -- 10.5 Future extinctions -- 10.6 How does all this help prevent extinctions? -- Summary -- Suggested reading -- Relevant websites -- 11: Conservation planning and priorities -- 11.1 Global biodiversity conservation planning and priorities -- 11.2 Conservation planning and priorities on the ground -- Box 11.1: Conservation planning for Key Biodiversity Areas in Turkey -- 11.3 Coda: the completion of conservation planning -- Summary -- Suggested reading -- Relevant websites -- Acknowledgments -- 12: Endangered species management: the US experience -- 12.1 Identification -- Box 12.1: Rare and threatened species and conservation planning in Madagascar -- Box 12.2: Flagship species create Pride -- 12.2 Protection -- 12.3 Recovery -- 12.4 Incentives and disincentives -- 12.5 Limitations of endangered species programs -- Summary -- Suggested reading -- Relevant websites -- 13: Conservation in human-modified landscapes -- 13.1 A history of human modification and the concept of "wild nature -- Box 13.1: Endocrine disruption and biological diversity -- 13.2 Conservation in a human-modified world -- 13.3 Selectively logged forests -- 13.4 Agroforestry systems -- 13.5 Tree plantations. , Box 13.2: Quantifying the biodiversity value of tropical secondary forests and exotic tree plantations -- 13.6 Agricultural land -- Box 13.3: Conservation in the face of oil palm expansion -- Box 13.4: Countryside biogeography: harmonizing biodiversity and agriculture -- 13.7 Urban areas -- 13.8 Regenerating forests on degraded land -- 13.9 Conservation and human livelihoods in modified landscapes -- 13.10 Conclusion -- Summary -- Suggested reading -- Relevant websites -- 14: The roles of people in conservation -- 14.1 A brief history of humanity's influence on ecosystems -- 14.2 A brief history of conservation -- Box 14.1: Customary management and marine conservation -- Box 14.2: Historical ecology and conservation effectiveness in West Africa -- 14.3 Common conservation perceptions -- Box 14.3: Elephants, animal rights, and Campfire -- 14.4 Factors mediating human-environment relations -- Box 14.4: Conservation, biology, and religion -- 14.5 Biodiversity conservation and local resource use -- 14.6 Equity, resource rights, and conservation -- Box 14.5: Empowering women: the Chipko movement in India -- 14.7 Social research and conservation -- Summary -- Relevant websites -- Suggested reading -- 15: From conservation theory to practice: crossing the divide -- Box 15.1: Swords into Ploughshares: reducing military demand for wildlife products -- Box 15.2: The World Bank and biodiversity conservation -- Box 15.3: The Natural Capital Project -- 15.1 Integration of Science and Conservation Implementation -- Box 15.4: Measuring the effectiveness of conservation spending -- 15.2 Looking beyond protected areas -- Box 15.5: From managing protected areas to conserving landscapes -- 15.3 Biodiversity and human poverty -- Box 15.6: Bird nest protection in the Northern Plains of Cambodia -- Box 15.7: International activities of the Missouri Botanical Garden. , 15.4 Capacity needs for practical conservation in developing countries -- 15.5 Beyond the science: reaching out for conservation -- 15.6 People making a difference: A Rare approach -- 15.7 Pride in the La Amistad Biosphere Reserve, Panama -- 15.8 Outreach for policy -- 15.9 Monitoring of Biodiversity at Local and Global Scales -- Box 15.8: Hunter self-monitoring by the Isoseño-Guaranı´ in the Bolivian Chaco -- Summary -- Suggested reading -- Relevant websites -- 16: The conservation biologist's toolbox - principles for the design and analysis of conservation studies -- 16.1 Measuring and comparing 'biodiversity' -- Box 16.1: Cost effectiveness of biodiversity monitoring -- Box 16.2: Working across cultures -- 16.2 Mensurative and manipulative experimental design -- Box 16.3: Multiple working hypotheses -- Box 16.4: Bayesian inference -- 16.3 Abundance Time Series -- 16.4 Predicting Risk -- 16.5 Genetic Principles and Tools -- Box 16.5: Functional genetics and genomics -- 16.6 Concluding Remarks -- Box 16.6: Useful textbook guides -- Summary -- Suggested reading -- Relevant websites -- Acknowledgements -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Atoms. ; Molecules. ; Physical optics. ; Nuclear physics. ; Electronic books.
    Description / Table of Contents: This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. International experts Comprehensive articles New developments.
    Type of Medium: Online Resource
    Pages: 1 online resource (457 pages)
    Edition: 1st ed.
    ISBN: 9780080951010
    Series Statement: Issn Series ; v.Volume 57
    DDC: 539
    Language: English
    Note: Front Cover -- Advances in Atomic, Molecular, and Optical Physics -- Copyright Page -- Contents -- Contributors -- Preface -- Chapter 1: Driven Ratchets for Cold Atoms -- 1. Introduction -- 2. Ratchets: Generalities -- 2.1. The Flashing Ratchet -- 2.2. The Rocking Ratchet -- 3. Symmetry and Transport in AC-Driven Ratchets -- 3.1. General Considerations -- 3.2. The Periodically Driven Rocking Ratchet -- 3.3. The Quasiperiodically Driven Rocking Ratchet -- 3.4. The Gating Ratchet -- 4. Cold Atom Ratchets -- 4.1. Dissipative Optical Lattices -- 4.2. Rocking Ratchet for Cold Atoms -- 4.3. Rocking Ratchet with Biharmonic Driving -- 4.3.1. Dissipation-Induced Symmetry Breaking -- 4.3.2. Rectification of Fluctuations, Current Reversals, and Resonant Activation in a System with Broken Hamiltonian Symmetry -- 4.4. Multifrequency Driving and Route to Quasiperiodicity -- 4.5. Gating Ratchet -- 5. Outlook -- References -- Chapter 2: Quantum Effects in Optomechanical Systems -- 1. Introduction -- 2. Cavity Optomechanics via Radiation-Pressure -- 2.1. Langevin Equations Formalism -- 2.2. Stability Analysis -- 2.3. Covariance Matrix and Logarithmic Negativity -- 3. Ground State Cooling -- 3.1. Feedback Cooling -- 3.1.1. Phase-Quadrature Feedback -- 3.1.2. Generalized Quadrature Feedback -- 3.2. Back-Action Cooling -- 3.3. Readout of the Mechanical Resonator State -- 4. Entanglement Generation with a Single Driven Cavity Mode -- 4.1. Intracavity Optomechanical Entanglement -- 4.2. Entanglement with Output Modes -- 4.3. Optical Entanglement between Sidebands -- 5. Entanglement Generation with Two Driven Cavity Modes -- 5.1. Quantum-Langevin Equations and Stability Conditions -- 5.2. Entanglement of the Output Modes -- 5.2.1. Optomechanical Entanglement -- 5.2.2. Purely Optical Entanglement between Output Modes. , 6. Cavity-Mediated Atom-Mirror Stationary Entanglement -- 7. Conclusions -- Acknowledgments -- References -- Chapter 3: The Semiempirical Deutsch-Maumlrk Formalism: A Versatile Approach for the Calculation of Electron-Impact Ionization Cross Sections of Atoms, Molecules, Ions, and Clusters -- 1. Introduction -- 2. Theoretical Background -- 2.1. The DM Formalism -- 2.2. Other Approaches -- 3. Atoms -- 3.1. Ground-State Atoms -- 3.2. Atoms in Excited States -- 3.2.1. Metastable Rare Gas Atoms -- 3.2.2. He Metastable Ionization -- 3.2.3. Cd and Hg Metastable Ionization -- 4. Molecules, Molecular Radicals, and Clusters -- 4.1. Molecules -- 4.1.1. CF3X (X = H, Br, I) -- 4.1.2. SiCl4 and TiCl4 -- 4.2. Free Radicals and Other Unstable Species -- 4.2.1. CH3, CH2, CH -- 4.2.2. CFx and NFx (x = 1-3) -- 4.3. Biomolecules -- 4.3.1. Uracil -- 4.3.2. DNA Bases -- 4.4. Clusters -- 4.4.1. C60 -- 4.4.2. C60 and C70 -- 5. Ions -- 5.1. Atomic Ions -- 5.1.1. Positive Atomic Ions -- 5.1.2. Negative Atomic Ions (Detachment) -- 5.1.2.1. O- and L- -- 5.2. Molecular Ions -- 5.2.1. Positive Molecular Ions -- 5.2.1.1. C2H2+ -- 5.2.1.2. CO+ and CD+ -- 5.2.2. Negative Molecular Ions (Detachment) -- 5.2.2.1. B2-, BO-, and CN- -- 6. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4: Physics and Technology of Polarized Electron Scattering from Atoms and Molecules -- 1. Introduction -- 2. Spin-dependent Interactions -- 2.1. Electron Exchange -- 2.2. Spin-Orbit Interactions -- 2.3. Combinations of Spin-Orbit and Exchange Effects -- 2.4. Relevant Scattering Amplitudes: Characterization of Excited States and the Scattered Electron -- 2.5. Theory, Archiving, and Formalism -- 3. Atomic Targets -- 3.1. Exchange Scattering -- 3.1.1. (e,e) and (e,2e) Processes -- 3.1.2. (e,gammae) and (e,gamma2e) Processes -- 3.2. Mott Scattering -- 3.2.1. (e,e) Processes. , 3.2.2. (e,egamma) and (e,2e) Processes -- 3.3. Combinations of Spin-Orbit Coupling and Exchange Effects -- 3.3.1. The Fine-Structure Effect and its Variants -- 3.3.1.1. (e,2e) Experiments -- 3.3.1.2. (e,egamma) Experiments -- 3.3.2. Combinations of Exchange with Mott Scattering -- 3.3.2.1. (e,e) and (e,2e) Experiments -- 3.3.2.2. (e,egamma) Experiments -- 3.3.3. Resonant Effects -- 4. Molecular Targets -- 4.1. Simple Diatomic Molecules -- 4.1.1. The Exchange Interaction in Elastic Scattering -- 4.1.2. Exchange Effects in Inelastic Scattering -- 4.2. Chiral Molecular Targets -- 5. Developments in Polarized Electron Technology -- 5.1. Sources of Polarized Electrons -- 5.1.1. Photemission from GaAs and its Variants -- 5.1.2. Sources Based on Chemi-Ionization of He* -- 5.1.3. Novel Sources of Polarized Electrons -- 5.1.3.1. Field emission tips Field -- 5.1.3.2. Sources involving multiphoton processes -- 5.1.3.3. Spin filters -- 5.2. Polarimetry -- 5.2.1. Mott Polarimetry -- 5.2.2. Optical Polarimetry -- Acknowledgments -- References -- Chapter 5: Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics -- 1. Introduction, Background, and Analogies -- 1.1. Timescales and Orders of Magnitude -- 1.2. The AMO Perspective: Photon Echoes, Ramsey Fringes, and NMR -- 1.3. Diagrammatic Representation of Dynamical Evolution -- 1.3.1 Causality and the Absorptive Lineshape -- 1.4. Molecular Perspective -- 1.4.1 Coupling -- 1.4.2 Line Broadening -- 1.4.3 Orientation -- 1.4.4 Coherence -- 1.4.5 Spectral Diffusion -- 1.4.6 Chemical Exchange -- 1.4.7 Energy Transfer -- 2. Two-dimensional Electronic Spectroscopy -- 2.1. Idiosyncrasies and Technical Challenges of Multidimensional Electronic Spectroscopy -- 2.2. Experimental Implementations -- 2.2.1 Diffractive Optics -- 2.2.2 The Pump-Probe Geometry. , 2.3. Examples of 2D Electronic Spectroscopy Experiments -- 2.3.1 Energy Transfer in Light-Harvesting Systems -- 2.3.2 Vibrational Wavepacket Dynamics in 2DES -- 2.3.3 Understanding 2DES Spectra -- 3. Two-dimensional Vibrational Spectroscopy -- 3.1. Idiosyncrasies of Multidimensional IR Spectroscopy -- 3.2. Experimental Implementation -- 3.3. Examples of Equilibrium 2DIR Spectroscopy -- 3.3.1 The OH Stretch in Water -- 3.3.2 Vibrational Coherence -- 4. Future Directions -- Acknowledgments -- Appendix: Derivation of the T2-Dependent Coherence -- References -- Chapter 6: Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices -- 1. Introduction -- 1.1. Basic Definitions and Scope -- 1.2. Phenomenology of Optical Spatial Dissipative Solitons (SDS) -- 1.3. Basic Equations -- 1.4. Bistability and Multistability of SDS -- 2. Existence, Bifurcation Structure, and Dynamics of Single and Multiple SDS -- 2.1. Patterns, Dissipative Solitons, and Homoclinic Snaking -- 2.2. Homoclinic Snaking -- 2.3. Basic Properties and Dynamics of SDS -- 2.4. Snaking in Other Optical Models -- 2.5. "Tilted" Snaking due to Nonlocal Coupling -- 3. Cavity Soliton Lasers -- 3.1. Attractive Features of a Cavity Soliton Laser and Bistable Laser Schemes -- 3.2. Cavity Solitons in Lasers with Optical Injection -- 3.3. Cavity Solitons Based on Frequency-Selective Feedback -- 3.3.1 Scheme and Mechanism of Bistability -- 3.3.2 Experimental Investigations in VCSELs -- 3.3.3 Theoretical Treatment -- 3.4. Laser Cavity Solitons due to Saturable Absorption -- 3.4.1 General Theory and Early Experiments -- 3.4.2 Modeling and Design of Semiconductor-Based Devices -- 3.4.3 Experimental Realization Using Face-to-Face VCSELs -- 4. Spatial Dissipative Solitons due to Spatially Periodic Modulations -- 4.1. Spatial Dissipative Solitons due to Intracavity Photonic Crystals. , 4.2. Discrete Spatial Dissipative Solitons -- 5. Phase Fronts and Locked Spots -- 6. Applications of Spatial Dissipative Solitons -- 6.1. Positioning of SDS and All-Optical Memories -- 6.2. Exploring the Mobility of SDS -- 6.3. All-Optical Delay Line -- 6.4. Delay Lines in a CSL and Spontaneous Motion of LCS -- 6.5. Soliton Force Microscopy -- 7. Conclusions -- Acknowledgments -- References -- Index -- Contents of Volumes in this Serial.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    New Haven :Yale University Press,
    Keywords: Ehrlich, Paul R. ; Biologists-United States-Biography. ; Electronic books.
    Description / Table of Contents: A renowned scientist and environmental advocate looks back on a life that has straddled the worlds of science and politics.
    Type of Medium: Online Resource
    Pages: 1 online resource (405 pages)
    Edition: 1st ed.
    ISBN: 9780300268546
    DDC: 509.2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    London :Taylor & Francis Group,
    Keywords: Environmental policy--United States. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (329 pages)
    Edition: 1st ed.
    ISBN: 9781317310150
    Series Statement: Routledge Revivals Series
    DDC: 363.70560973
    Language: English
    Note: Cover -- Title -- Copyright -- Original Title -- Original Copyright -- Contents -- List of Tables -- List of Figures -- Foreword -- Acknowledgments -- About the Authors -- 1. Introduction -- 2. The Evolution of Federal Regulation -- The Creation and Growth of the EPA -- Fundamental Choices in Environmental Regulation -- U.S. Environmental Policy: A Hybrid Approach -- 3. Air Pollution Policy -- Air Pollution Control Before 1970 -- The New Direction in Air Pollution Control Policy -- Accomplishments Since 1970 -- An Economic Evaluation of the Clean Air Act -- Conclusions and Policy Recommendations -- 4. Water Pollution Policy -- Introduction -- The History and Evolution of Water Pollution Policy -- The Federal Water Pollution Control Act of 1972 and Its Amendments -- Accomplishments of the Program Since 1972 -- Economic Issues and Problems -- Conclusions -- 5. Hazardous Wastes -- Introduction -- The Nature and Scope of the Problem -- The Current Statutory and Regulatory Framework -- Hazardous Waste Management: Critical Issues -- Conclusions -- 6. Toxic Substances Policy -- Introduction -- Background -- Legislative Response -- Issues in Regulating Chemicals -- Conclusions -- 7. Monitoring and Enforcement -- Distinctions and Definitions -- A Sketch of the Current System -- Evidence on Continuing Compliance -- Present Efforts to Improve Monitoring and Enforcement -- Suggestions for Further Improvements -- 8. Overall Assessment and Future Directions -- Progress to Date -- Future Directions -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...