GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-09
    Description: The interaction and feedbacks between surface water and permafrost are fundamental processes shaping the surface of continuous permafrost landscapes. Lake-rich regions of Arctic lowlands, such as coastal plains of northern Alaska, Siberia, and Northwest Canada, where shallow thermokarst lakes often cover 20-40% of the land surface are a pronounced example of these permafrost processes. In these same Arctic coastal regions, current rates of near-surface atmospheric warming are extremely high, 0.8 °C / decade for example in Barrow, Alaska, primarily due to reductions in sea ice extent (Wendler et al., 2014). The thermal response of permafrost over recent decades is also rapid, warming approximately 0.6°C / decade for example at Deadhorse, Alaska, yet this permafrost is still very cold, less than -6°C (Romanovsky et al., 2015). The temperature departure created by water in lakes set in permafrost is well recognized and where mean annual bed temperatures (MABT) are above 0 °C, a talik develops (Brewer, 1958). The critical depth of water in lakes where taliks form is generally in excess of maximum ice thickness, which has historically been around 2 m in northern Alaska. Thus, lakes that are shallower than the maximum ice thickness, which are the majority of water bodies in many Arctic coastal lowlands, should maintain sublake permafrost and have a shallow active layer if MABT’s are below freezing. Recent analysis, however, suggests a lake ice thinning trend of 0.15 m / decade for lakes on the Barrow Peninsula, such that the maximum ice thickness has shifted to less than 1.5 m since the early 2000’s. We hypothesized that the surface areas most sensitive to Arctic climate warming are below lakes with depths that are near or just below this critical maximum ice thickness threshold primarily because of changing winter climate and reduced ice growth. This hypothesis was tested using field observations of MABT, ice thickness, and water depth collected from lakes of varying depths and climatic zones on the coastal plain and foothills of northern Alaska. A model was developed to explain variation in lake MABT by partitioning the controlling processes between ice-covered and open-water periods. As expected, variation in air temperature explained a high amount of variation in bed temperature (72%) and this was improved to 80% by including lake depth in this model. Bed temperature during the much longer ice-covered period, however, was controlled by lake depth relative to regional maximum ice thickness, termed the Effective Depth Ratio (EDR). A piecewise linear regression model of EDR explained 96% of the variation in bed temperature with key EDR breaks identified at 0.75 and 1.9. These breaks may be physically meaningful towards understanding the processes linking lake ice to bed temperatures and sublake permafrost thaw. For example if regional lake ice grows to 1.5 m thick, the first break is at lake depth of 1.1 m, which will freeze by mid-winter and may separate lakes with active-layers from lakes with shallow taliks. The second EDR break for the same ice thickness is at a lake depth of 2.9 m, which may represent the depth where winter thermal stratification becomes notable (greater than 1 °C) and possibly indicative of lakes that have well developed taliks that store and release more heat. We then combined these ice-covered and open-water models to evaluate the sensitivity of MABT to varying lake and climate forcing scenarios and hindcast longer-term patterns of lake bed warming. This analysis showed that MABT in shallow lakes were most sensitive to changes in ice thickness, whereas ice thickness had minimal impact on deeper lakes and variation in summer air temperature had a very small impact on MABT across all lake depths. Using this model, forced with Barrow climate data, suggests that shallow lake beds (1-m depth) have warmed substantially over the last 30 years (0.8 °C / decade) and more importantly now have an MABT that exceeds 0 °C. Deeper lake beds (3-m depth), however, are suggested to be warming at a much slower rate (0.3 °C / decade), compared to both air temperature (0.8 °C/ decade) and permafrost (0.6 °C/ decade). This contrasting sensitivity and responses of lake thermal regimes relative to surrounding permafrost thermal regimes paint a dramatic and dynamic picture of an evolving Arctic land surface as climate change progresses. We suggest that the most rapid areas of permafrost degradation in Arctic coastal lowlands are below shallow lakes and this response is driven primarily by changing winter conditions. References: Brewer, M. C. (1958), The thermal regime of an arctic lake, Transactions of the American Geophysical Union, 39, 278-284. Romanovsky, V. E., S. L. Smith, H. H. Christiansen, N. I. Shiklomanov, D. A. Streletskiy, D. S. Drozdov, G. V. Malkova, N. G. Oberman, A. L. Kholodov, and S. S. Marchenko, (2015). The Arctic Terrestrial Permafrost in “State of the Climate in 2014” . Bulletin of the American Meteorological Society, 96, 7, 139-S141, 2015 Wendler, G., B. Moore, and K. Galloway (2014), Strong temperature increase and shrinking sea ice in Arctic Alaska, The Open Atmospheric Science Journal, 8, 7-15.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-23
    Description: Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last 30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-16
    Description: Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5+/-1 °C (1981–2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (-0.04 to -0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to 〉6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in south-central Alaska as well as additional contemporary observations of these ecosystem-protected permafrost sites south of the regions with relatively stable permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-09
    Description: Permafrost influences roughly 80% of the Alaskan landscape (Jorgenson et al. 2008). Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales such that it may persist in regions with a mean annual air temperature (MAAT) that is currently above 0 °C (Jorgenson et al. 2010). Ecosystem-protected permafrost may be found in these regions with present day climatic conditions that are no longer conducive to its formation (Shur and Jorgenson, 2007). The perennial frozen deposits typically occur as isolated patches that are highly susceptible to degradation. Press disturbances associated with climate change and pulse disturbances, such as fire or human activities, can lead to immediate and irrevocable permafrost thaw and ecosystem modification in these regions. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska (Figure 1a), a region with a MAAT of 1.5±1 °C (1981 to 2010). In September 2012, field studies conducted at a number of black spruce plateaus located within herbaceous wetland complexes documented frozen ground extending from 1.4 to 6.1 m below the ground surface, with thaw depth measurements ranging from 0.49 to 〉1.00 m. Ground penetrating radar surveys conducted in the summer and the winter provided additional information on the geometry of the frozen ground below the forested plateaus. Continuous ground temperature measurements between September 2012 and September 2015, using thermistor strings calibrated at 0 °C in an ice bath before deployment, documented the presence of permafrost. The permafrost (1 m depth) on the Kenai Peninsula is extremely warm with mean annual ground temperatures that range from -0.05 to -0.11 °C. To better understand decadal-scale changes in the residual permafrost plateaus on the Kenai Peninsula, we analyzed historic aerial photography and highresolution satellite imagery from ca. 1950, ca. 1980, 1996, and ca. 2010. Forested permafrost plateaus were mapped manually in the image time series based on our field observations of characteristic landforms with sharply defined scalloped edges, marginal thermokarst moats, and collapse-scar depressions on their summits. Our preliminary analysis of the image time series indicates that in 1950, permafrost plateaus covered 20% of the wetland complexes analyzed in the four change detection study areas, but during the past six decades there has been a 50% reduction in permafrost plateau extent in the study area. The loss of permafrost has resulted in the transition of forested plateaus to herbaceous wetlands. The degradation of ecosystem-protected permafrost on the Kenai Peninsula likely results from a combination of press and pulse disturbances. MAAT has increased by 0.4 °C/decade since 1950, which could be causing top down permafrost thaw in the region. Tectonic activity associated with the Great Alaska Earthquake of 1964 caused the western Kenai Peninsula to lower in elevation by 0.7 to 2.3 m (Plafker 1969), potentially altering groundwater flow paths and influencing lateral as well as bottom up permafrost degradation. Wildfires have burned large portions of the Kenai Peninsula lowlands since 1940 and the rapid loss of permafrost at one site between 1996 and 2011 was in response to fires that occurred in 1996 and 2005. Better understanding the resilience and vulnerability of the Kenai Peninsula ecosystem-protected permafrost to degradation is of importance for mapping and predicting permafrost extent across colder permafrost regions that are currently warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-25
    Description: Permafrost regions have been identified to host a soil organic carbon (C) pool of global importance, storing more than 1500 PgC. A large portion of this C pool is currently frozen in deep soils and permafrost deposits. Permafrost thaw hence may result in mobilization of large amounts of C as greenhouse gases, dissolved organic C, or particulate organic matter, with substantial impacts on C cycling and C pool distribution. Understanding potential consequences and feedbacks of permafrost degradation therefore requires better quantification of processes and landforms related to thaw. While many predictive land surface models so far consider a gradual increase in the average active layer thickness across the permafrost domain, rapid shifts in landscape topography and surface hydrology caused by thaw of ice-rich permafrost are much more difficult to project. Field studies of thermokarst and thermo-erosion indicate highly complex and rapid landscape-ecosystem feedbacks. Contrary to top-down permafrost thaw that may affect any permafrost type at the surface, both thermokarst and thermo-erosion are considered pulse disturbances that are closely linked to presence of near-surface ice-rich permafrost, are active on short sub-annual to decadal time scales, and may affect C stores tens of meters deep. Here we present a comprehensive review synthesizing measured and modeled rates of thermokarst and thermo-erosion processes from the scientific literature and own observations across the northern Hemisphere permafrost regions. The goal of our synthesis is (1) to provide an overview on the range of thermokarst and thermo-erosion rates that may be used for parameterization of thermokarst and thermo-erosion in ecosystem and landscape models; and (2) to assess simple back-of-the-envelope scenarios of the magnitude of C thaw due to thermokarst and thermo-erosion versus projected active layer thickening. Example scenarios considering thermokarst lake expansion and talik growth indicate that rapid thaw processes have a high possibility to contribute substantially to permafrost C mobilization over the coming century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-02
    Description: Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed‐talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal‐scale expansion rates of 0.16, 0.38, and 0.58 m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91 m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400 years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80 m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum‐Arctic coastal lowland regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-02
    Description: Degradation of sub-aquatic permafrost can release large quantities of methane into the atmosphere, impact offshore drilling activities, and affect coastal erosion. The degradation rate depends on the duration of inundation, warming rate, sediment characteristics, the coupling of the bottom to the atmosphere through bottom-fast ice, and brine injections into the sediment. The relative importance of these controls on the rate of sub-aquatic permafrost degradation, however, remains poorly understood. This poster presents a conceptual evaluation of sub-aquatic permafrost thaw mechanisms and an approach to their representation using one-dimensional modelling of heat and dissolved salt diffusion. We apply this model to permafrost degradation observed below Peatball Lake on the Alaska North Slope and compare modelling results to talik geometry information inferred from transient electromagnetic (TEM) soundings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-21
    Description: Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (〉25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2 study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-30
    Description: The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) systems occupy 〉20% of the circumpolar Northern Hemisphere permafrost region and ~50% of the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are not currently offsetting the land area gained through lake drainage, enhancing the dominance of drained lake basins (DLBs). The contemporary transition from lakes to DLBs decreases hydrologic storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shifting habitat mosaic in Arctic and boreal regions. However, further warming could inhibit permafrost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is needed to understand the future dynamics of L-DLB systems to improve Earth system models, permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure development in permafrost regions and the well-being of northern socio-ecological systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...