GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 57 (1995), S. 135-158 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary In this paper the results of simulations of air pollution carried out with the mesoscale model system KAMM/DRAIS are presented. They are compared with results of the European scale model EURAD which have been provided by the EURAD-Group, Cologne. With this comparison it is intended to analyse to what extent better resolution of topography and emission data used by the mesoscale model effects the model results. The simulations have been carried out for July 15, 1986, a typical summer day. The model domain contains south-west Germany and part of Alsace with a resolution of 5 km. The emissions for this resolution have been derived by a combination of the coarse EURAD emission data with the data of the TULLA experiment which are available on a much finer grid. The initial and boundary conditions for the species concentrations are determined from the results of the EURAD model. This coupling introduces the long range transport of pollutants into the mesoscale simulation. The meteorological and concentration data of the EURAD model are compared with the corresponding DRAIS model results. The mesoscale flow field is characterized by the channeling along the Upper Rhine Valley, which is not resolved in the EURAD model. The concentration distributions of both models are similar during midday, because of the strong vertical mixing. In the night and especially, in the morning and evening hours the spatial distribution is much better represented by the DRAIS model results. The better resolution of the emissions and the topography in the DRAIS model compared with the EURAD model (80 km grid size) becomes really noticeable. The difference of the ozone concentrations between cities and the, surrounding areas and between the Rhine Valley and the limiting mountains are in the order of 30 ppb as compared to a few ppb in the EURAD simulation. In the morning NO concentrations of about 200 ppb are simulated in the area between Heilbronn and Stuttgart. The EURAD model provides only about 5 ppb. Comparisons with measurements show that the DRAIS simulations are more realistic than the EURAD model results. The features mentioned are also found in an evaluation of the concentration variations in areas corresponding to a grid cell of the EURAD model. Two completely different areas are selected to demonstrate the possible range of the concentration variation. In the area around the City of Stuttgart the ozone concentration in the morning and the evening varies between zero ppb and 50 ppb, approximately. The mean value is nearly the same in both simulations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-29
    Description: From 27 Janua1y to 23 June 1979 R. V. "Meteor" surveyed the central equatorial Atlantic on a section along 22° W from 3° N to 2° S. During the observation period, a hydrographic section down to 600 m was repeated ten times with a continuous "Howaldt-Bathysonde" CTD and a rosette sampler. The station distance was 10 to 15 nm. The water samples were used to recalibrate salinity and to determine oxygen, nutrients and chlorophyll a. An undulating CTD system ("Delphin") was towed on 11 sections. A profiling distance of one to two nautical miles and a profile depth of 90 m was obtained. Five current meter arrays were moored along 22° W between 3° N and 1° S from January to March 1979. In May and June two moorings were installed at 2° N and at the equator. On the buoys measurements of wind speed and direction were obtained. At 43 stations a wire-guided Aanderaa profiling current meter was successfully lowered. Drifting buoy experiments were repeated three times with clusters of 5 to 10 buoys. A fourth experiment took place in 1978 in the Gulf of Guinea. On the way from and to port XBT sections were carried out. The data sets obtained by these instruments are presented in this data report.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...