GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Submarine topography ; Coasts ; Geomorphologie
    Type of Medium: Book
    Pages: 43 , 3 Faltkt
    Series Statement: Bulletin / New Zealand Department of Scientific and Industrial Research 149
    Language: English
    Note: Enthält Bibliogr
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 41 (1994), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Experimental results are reported concerning the nature of reflected flows generated when density currents are incident upon ramp-type flow obstructions. The reflected flows are bores (moving hydraulic jumps that transport mass) with flow characteristics in common with either a group of solitary waves (weak Type A bores) or the original density current (strong Type C bores). Alternatively, the bore may have attributes in common with both of these end-member forms (intermediate Type B bores). Bore strength is positively correlated with the ratio of reverse flow thickness to that of the residual tail of the forward flow. The largest values of this ratio occur when ‘proximal’reflections arrive at the steeper ramps. Measured particle paths in the bores indicate that natural examples will have the potential to transport and deposit sediment. Strong bores have velocity characteristics very similar to the original current and thus in nature the generated sequence of sedimentary structures will resemble those of the original depositing current. The train of solitary waves that make up a weak bore sequence exhibits a pulsating velocity profile at a point. Such flows may thus generate repeated sequences of structures separated by fine ‘drapes’that are distinguishable from the deposits of the original turbidity current. These conclusions are applied to examples of reflected turbidites described from the Palaeozoic to Quaternary sedimentary record.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 36 (1989), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 34 (1987), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Pickering & Hiscott, (1985) have demonstrated amply the presence of reverse-flow units within the thick-bedded calcareous wacke (TCW) beds of the turbiditic Cloridorme Formation (Middle Ordovician, Gaspé Peninsula, Quebec, Canada). These reverse-flow units are underlain and overlain by units which reveal flow in the primary (obverse) direction.In this paper, a model is proposed for this reverse flow, based on the probable nature of the primary turbidity flow. It appears that the initial flow was highly elongated (thickness h≪ length L), with h∼ 500 m, velocity U∼ 2 m s-1 and sediment concentration C∼ 1·25%o. The rate of momentum loss of the flow is estimated by means of a useful parameter which we call the ‘drag distance’, symbol dD, defined by〈displayedItem type="mathematics" xml:id="mu1" numbered="no"〉〈mediaResource alt="image" href="urn:x-wiley:00370746:SED1143:SED_1143_mu1"/〉where h and L are the thickness and length of the flow, respectively; cCd is a combined drag coefficient representing friction on the bottom and at the upper interface; and fCd is a form-drag coefficient related to the shape and size of the head. dD is the distance travelled by a current of constant h and L, flowing over a horizontal bottom and obeying a quadratic friction law, for an e-fold reduction in velocity.Simple considerations, confirmed by our own experiments (described in this paper), show that such an elongated turbidity current cannot be reflected as a whole from an adverse slope: when the nose of the current reaches the slope, it forms a hump, which surges backwards and sooner or later breaks up into a series of internal solitons. The latter, probably numbering 4–7, will cause reverse flow at a given point as they pass by, provided that the residual velocity in the tail is not too great. Flow in the original (obverse) direction will be re-established after the passage of the solitons. Quiescent periods in front of, between and behind the solitons, when soliton-associated currents cancelled out the residual obverse flow, would allow the deposition of thin mud-drapes.Additional flow reversals observed in a few of the TCW beds cannot be explained readily by the re-passage of solitons, since wave breaking at the ends of the basin would cause massive energy loss; internal seiches are the preferred explanation for these later reversals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The process of Differential Roughness Secondary Flow (DRSF), hitherto little recognized, recently was demonstrated in a wind tunnel and in a flume. It is suggested here the DRSF may, in the natural environment, play an important part in the persistence and sharp definition of sand ribbons, previously initiated by other processes. In 1980 Karl described a series of sand ribbons, alternating with exposed substrate, which he attributed to the effect of Langmuir circulations. Although Langmuir Circulation Secondary Flow (LCSF) may indeed, in some cases, initiate sand ribbons, the sharply-defined edges typical of these features are explained better by DRSF.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...