GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: 342 S. , Ill., graph. Darst., Kt.
    Series Statement: Sedimentary geology 235.2011.3/4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 1369-1371 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Interference effects occur in the optical spectroscopy of thin film samples, and they can obliterate absorption spectra, especially if these are weak. A solution to this problem, originally proposed in 1976, is to place the sample inside an integrating sphere in the Edwards configuration so as to collect both reflected and transmitted light simultaneously. Surprisingly, the subsequent published literature on this technique is virtually nonexistent, despite its simplicity and effectiveness. This paper describes its use to measure absorption dips as weak as 2×10−4 in thin film samples. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 43 (1996), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The effects of liquefaction in saturated sand bodies under a variety of driving forces are described from shaking table experiments, and structures from the geological record are presented which are analogous to the experimental structures. The collapse of sloping heaps of cross-bedded sand under a gravitational body force generates low-angle, essentially uncontorted stratification. A basal zone of shearing may be present, with steepened and folded foresets. Stretching of foresets may be accommodated on normal faults, and bottomsets may be contorted into inclined folds. In natural systems the substrate may also liquefy, causing deformation driven by an unevenly distributed confining load. Stratification in the surface bedform is flattened, and stratification in the substratum contorted. Experiments failed to produce relative displacement at the interface between stacked sand bodies. Liquefaction of gravitationally unstable systems in sands generates load structures comparable to those from sand-mud systems. Recumbent-folded deformed cross-bedding is formed by current shear over a liquefied bed, as has been inferred from field and theoretical analyses. Shear of nonliquefied sand forms angular folds. Other deformation mechanisms, such as fluidization or seepage, may generate structures similar to all of these. Local water-escape structures driven by fluidization occur in the upper parts of some liquefied sand bodies. They include cusps, sand volcanoes and clastic dykes. Transient cavities formed in some experiments and seemed to be preserved as breached cusps. Although the experiments tried to isolate individual driving forces, driving forces may operate together, and there may be a continuum between deformation driven by water escape and deformation driven by loading. Different structures from those described here may form where liquefaction develops in a buried layer as opposed to at the sediment surface.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...