GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-09-23
    Description: Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigeneous matter into Arctic coastal waters. We used optical operational satellite data from the Ocean Colour sensor MERIS onboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigeneous matter in the southern Laptev Sea. MERIS satellite data from 2006 on to 2011 were processed using the Case2Regional Processor, C2R, installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using Ocean Colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS parameters with surface water sampling data from the Russian-German ship expeditions LENA2010 and TRANSDRIFT-XVII taking place in August and September 2010 in the southern Laptev Sea. The surface waters of the southern Laptev Sea are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of Suspended Particulate Matter, SPM, and coloured Dissolved Organic Matter, cDOM. The mapped calculated optical water parameters, such as the first attenuation depth, Z90, the attenuation coefficient, k, and Suspended Particulate Matter, SPM, visualize resuspension events that occur in shallow coastal and shelf waters indicating vertical mixing events. The mapped optical water parameters also visualize that the hydrography of the Laptev Sea is dominated by frontal meanders with amplitudes up to 30 km and eddies and filaments with diameters up to 100 km that prevail throughout the ice-free season. The meander crests, filaments and eddy-like structures that become visible through the mapped MERIS C2R parameters indicate enhanced vertical and horizontal transport energy for the transport of terrigenous and living biological matter in the surface waters during the ice-free season.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-24
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Geological Survey of Canada
    In:  In: Summary of 2018 Mackenzie Delta permafrost field campaign (mCAN2018), Northwest Territories. , ed. by Boike, J. and Dallimore, S. R. Geological Survey of Canada Open File, 8640 . Geological Survey of Canada, pp. 19-20.
    Publication Date: 2021-04-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Poster] In: AGU Fall Meeting 2010, 13.12.-17.12.2010, San Francisco, California, USA ; C51A-0489 .
    Publication Date: 2019-09-23
    Description: C51A-0489: The terrigenous carbon export into the Arctic shelf systems is a major component of the Arctic Organic Carbon (OC) cycle. Mac Guire et al.(2009)in their review on the Arctic Carbon Cycle recommendate to strengthen observations and design the research sector of 'scaling' that is a key challenge to link the processes observed and understood on fine scales to larger scales, e.g., needed for modeling. Here, remote sensing observations can become important tools. Recent development of satellite ocean color sensors such as MODIS, SeaWiFS, MERIS has been accompanied by an increased effort to establish Ocean Colour (OC) algorithms (e.g., for chlorophyll, suspended matter, coloured dissolved organic matter). The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses MERIS data for synoptical monitoring of terrigenous suspended and organic matter in the late-summer ice-free waters of the Laptev See region. MERIS Reduced Resolution (RR)-LIB data are processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS Case2 Regional processor for coastal application (C2R). Calculated aquatic parameters are optical coefficients and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. The Laptev Sea is characterized by a very shallow topography and considerable Regions of Fresh water Influence ROFIs. The maximum river discharge of the Lena River, the second largest Arctic river in terms of annual fresh water discharge happens during the spring ice-breakup in June. Fluvial systems serve as point sources for high fluxes of dissolved and particulate terrigenous materials. The Laptev Sea coast is a highly dynamic mainly sedimentary ice-rich system that delivers vast amounts of interstorage carbon and old carbon from syncryogenic deposits. Initial comparisons with expedition data (cDOM, transparency, SPM, turbidity, chlorophyll) from the German-Russian TRANSDRIFT expeditions and from German-Russian expeditions at the Laptev Sea Coast (2008 to 2010) are presented. MERIS-C2R optical parameters such as the first attenuation depth, ’Z90’, seem adequately to represent true conditions. Whereas the derived concentration parameters seem to be overestimated. The synoptic information of the optical MERIS-C2R parameters offers an immediate wealth of information. The spatial patterns of the processed MERIS C2R time series show the inter-annual scale of the atmospherically driven circulation patterns. On event scales, we need to investigate if weather patterns potentially contribute to short pulses and circulation patterns.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...