GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organic oxides. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (320 pages)
    Edition: 1st ed.
    ISBN: 9780470686089
    Series Statement: Inorganic Materials Series ; v.12
    DDC: 546/.7212
    Language: English
    Note: Intro -- Functional Oxides -- Contents -- Inorganic Materials Series Preface -- Preface -- List of Contributors -- 1 Noncentrosymmetric Inorganic Oxide Materials: Synthetic Strategies and Characterisation Techniques -- 1.1 Introduction -- 1.2 Strategies toward Synthesising Noncentrosymmetric Inorganic Materials -- 1.3 Electronic Distortions -- 1.3.1 Metal Oxyfluoride Systems -- 1.3.2 Salt-Inclusion Solids -- 1.3.3 Borates -- 1.3.4 Noncentrosymmetric Coordination Networks -- 1.4 Properties Associated with Noncentrosymmetric Materials -- 1.4.1 Second-Harmonic Generation -- 1.4.2 Piezoelectricity -- 1.4.3 Pyroelectricity -- 1.4.4 Ferroelectricity -- 1.5 Outlook - Multifunctional Materials -- 1.5.1 Perovskites -- 1.5.2 Hexagonal Manganites -- 1.5.3 Metal Halide and Oxy-Halide Systems -- 1.6 Concluding Thoughts -- 1.6.1 State of the Field -- Acknowledgements -- References -- 2 Geometrically Frustrated Magnetic Materials -- 2.1 Introduction -- 2.2 Geometric Frustration -- 2.2.1 Definition and Criteria: Subversion of the Third Law -- 2.2.2 Magnetism Short Course -- 2.2.3 Frustrated Lattices - The Big Four -- 2.2.4 Ground States of Frustrated Systems: Consequences of Macroscopic Degeneracy -- 2.3 Real Materials -- 2.3.1 The Triangular Planar (TP) Lattice -- 2.3.2 The Kagom< -- eacute> -- Lattice -- 2.3.3 The Face-Centred Cubic Lattice -- 2.3.4 The Pyrochlores and Spinels -- 2.3.5 Other Frustrated Lattices -- 2.4 Concluding Remarks -- References -- 3 Lithium Ion Conduction in Oxides -- 3.1 Introduction -- 3.2 Sodium and Lithium < -- beta> -- -Alumina -- 3.3 Akali Metal Sulfates and the Effect of Anion Disorder on Conductivity -- 3.4 LISICON and Related Phases -- 3.5 Lithium Conduction in NASICON-Related Phases -- 3.6 Doped Analogues of LiZr2(PO4)3 -- 3.7 Lithium Conduction in the Perovskite Structure -- 3.7.1 The Structures of Li3xLa2/3-xTiO3. , 3.7.2 Doping Studies of Lithium Perovskites -- 3.8 Lithium-Containing Garnets -- References -- 4 Thermoelectric Oxides -- 4.1 Introduction -- 4.2 How to Optimise Thermoelectric Generators (TEG) -- 4.2.1 Principle of a TEG -- 4.2.2 The Figure of Merit -- 4.2.3 Beyond the Classical Approach -- 4.3 Thermoelectric Oxides -- 4.3.1 Semiconducting Oxides and the Heikes Formula -- 4.3.2 NaxCoO2 and the Misfit Cobaltate Family -- 4.3.3 Degenerate Semiconductors -- 4.3.4 All-Oxide Modules -- 4.4 Conclusion -- Acknowledgements -- References -- 5 Transition Metal Oxides: Magnetoresistance and Half-Metallicity -- 5.1 Introduction -- 5.2 Magnetoresistance: Concepts and Development -- 5.2.1 Phenomenon of Magnetoresistance: Metallic Multilayers and Anisotropic Magnetoresistance (AMR) -- 5.2.2 Giant Magnetoresistance (GMR) Effect -- 5.2.3 Colossal Magnetoresistance (CMR) in Perovskite Oxomanganates -- 5.2.4 Tunnelling Magnetoresistance (TMR) and Magnetic Tunnel Junctions (MTJ) -- 5.2.5 Powder, Intrinsic and Extrinsic MR -- 5.3 Half-Metallicity -- 5.3.1 Half-Metallicity in Heusler Alloys -- 5.3.2 Half-Metallic Ferro/Ferrimagnets, Antiferromagnets -- 5.4 Oxides Exhibiting Half-Metallicity -- 5.4.1 CrO2 -- 5.4.2 Fe3O4 and Other Spinel Oxides -- 5.4.3 Perovskite Oxomanganates -- 5.4.4 Double Perovskites -- 5.5 Magnetoresistance and Half-Metallicity of Double Perovskites -- 5.5.1 Double Perovskite Structure -- 5.5.2 Ordering and Anti-Site (AS) Disorder in Double Perovskites -- 5.5.3 Electronic Structure and Magnetic Properties of Double Perovskites -- 5.5.4 Magnetoresistance and Half-Metallicity in Double Perovskites -- 5.5.5 High Curie Temperature (TC) Double Perovskites and Room Temperature MR -- 5.6 Spintronics - The Emerging Magneto-Electronics -- 5.7 Summary -- Acknowledgements -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Organometallic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (9388 pages)
    Edition: 4th ed.
    ISBN: 9780323913508
    DDC: 547.05
    Language: English
    Note: Front Cover -- Comprehensive Organometallic Chemistry IV -- Copyright -- Contents of Volume 1 -- Editor Biographies -- Editors in Chief -- Volume Editors -- Contributors to Volume 1 -- Preface -- Introduction: Volume I -- Models for Understanding Main Group and Transition Metal Bonding -- 1.02.1. Introduction -- 1.02.2. Primogenic repulsion: Orbital size effects in bonding in the periodic table -- 1.02.3. The 2-center 2-electron heterocovalent bond and polar covalence theory -- 1.02.4. The 2-center 2-electron dative bond -- 1.02.5. Complementarity of qualitative hybridization theory and molecular orbital theory -- 1.02.6. Lone pair bond weakening and its influence on organometallic chemistry -- 1.02.7. Beyond the 2-center 2-electron bond -- 1.02.8. Examples of using Bent's rule, hybridization, and structure in the main group -- 1.02.9. Hybridization theory and the transition metals -- 1.02.10. Practical evaluation of metal-ligand bond interactions for applications in catalysis -- 1.02.11. Concluding remarks -- Acknowledgment -- References -- Reversible Homolysis of Metal-Carbon Bonds -- 1.03.1. Introduction -- 1.03.2. General aspects of homolytic metal-carbon bond cleavage -- 1.03.2.1. Energy profile for thermal activation -- 1.03.2.2. Photoinduced cleavage -- 1.03.2.3. The ``persistent radical effect´´ -- 1.03.2.4. Thermal stability -- 1.03.2.5. Bond cleavage activation parameters -- 1.03.2.6. Bond formation activation parameters -- 1.03.2.7. Calorimetric studies of metal-carbon bond strengths -- 1.03.2.8. Other methods to measure BDFEs/BDEs -- 1.03.2.8.1. Equilibrium measurements -- 1.03.2.8.2. Decomposition kinetics -- 1.03.2.8.3. Electrochemical simulations -- 1.03.2.9. Computational studies -- 1.03.3. Reversible metal-carbon bond homolysis in biochemistry -- 1.03.3.1. Vitamin B12 and derivatives: General aspects. , 1.03.3.2. Coenzyme B12-dependent enzymatic reactions involving cobalt(III)-carbon bond homolysis -- 1.03.3.3. Radical S-adenosyl-l-methionine -- 1.03.3.4. Metal-carbon bond homolysis in other enzymes -- 1.03.4. Reversible metal-carbon bond homolysis in metal-mediated and -catalyzed organic transformations -- 1.03.4.1. General aspects of radical reactions in the presence of metals -- 1.03.4.2. Metal-based radical generations -- 1.03.4.2.1. By reduction of a polar R-Y bond -- 1.03.4.2.1.1. By atom/group transfer (AT/GT) -- 1.03.4.2.1.2. By electron transfer (ET) -- 1.03.4.2.2. By H atom transfer (HAT) to an alkene -- 1.03.4.2.3. By metal-carbon bond homolysis -- 1.03.4.3. Role of metal-carbon bonds in radical reactions -- 1.03.4.3.1. Hydrogenation -- 1.03.4.3.2. Dehydrometallation -- 1.03.4.3.3. Alkyl-hydride reductive elimination -- 1.03.4.3.4. Dialkyl reductive elimination -- 1.03.4.3.5. Alkyl transfer to an electrophile -- 1.03.4.3.6. Oxidation -- 1.03.4.3.7. Transmetalation -- 1.03.5. Reversible metal-carbon bond homolysis in controlled radical polymerization -- 1.03.5.1. General aspects of organometallic-mediated radical polymerization (OMRP) -- 1.03.5.2. Titanium -- 1.03.5.3. Vanadium -- 1.03.5.4. Chromium -- 1.03.5.5. Molybdenum -- 1.03.5.6. Manganese and rhenium -- 1.03.5.7. Iron -- 1.03.5.8. Ruthenium and osmium -- 1.03.5.9. Cobalt -- 1.03.5.9.1. Porphyrin systems -- 1.03.5.9.2. β-Diketonate systems -- 1.03.5.9.3. Other planar macrocyclic systems -- 1.03.5.9.4. Other ligand systems -- 1.03.5.10. Rhodium -- 1.03.5.11. Copper -- Acknowledgment -- References -- Very Low Oxidation States in Organometallic Chemistry -- Nomenclature -- 1.04.1. Preface -- 1.04.1.1. Main-group (organo)metal polyanions -- 1.04.1.2. Mononuclear metal anions -- 1.04.2. Organometallic compounds with negative oxidation states of the transition metal. , 1.04.2.1. Comment on oxidation state formalism and redox non-innocence -- 1.04.2.2. Carbonyl metallates -- 1.04.2.2.1. Reactivity of anionic carbonyl metallates -- 1.04.2.3. Isonitrile-based metallates -- 1.04.2.4. Alkene metallate complexes -- 1.04.2.4.1. Homoleptic arene-based metallate complexes -- 1.04.2.4.2. Synthesis and structure of arene metallates -- 1.04.2.4.3. Reactivity -- 1.04.2.5. Carbene-based metallates -- 1.04.2.6. Honorable mentions -- 1.04.3. Concluding remarks and outlook -- Acknowledgment -- References -- Very High Oxidation States in Organometallic Chemistry -- Abbreviations -- 1.05.1. Introduction -- 1.05.2. Metal alkyl complexes -- 1.05.3. Metal aryl complexes -- 1.05.4. Alkyl- and aryl complexes with oxo, imido and nitrido ligands -- 1.05.5. Carbenes and carbynes -- 1.05.6. Cyclopentadienyl complexes -- 1.05.7. Hydride -- 1.05.8. Silyl chemistry -- 1.05.8.1. Halogenation reactions -- 1.05.9. One-electron oxidizing agents -- 1.05.10. Conclusion -- Acknowledgment -- References -- Characterization Methods for Paramagnetic Organometallic Complexes -- 1.06.1. Introduction -- 1.06.2. Electron paramagnetic resonance (EPR) spectroscopy -- 1.06.2.1. Introduction -- 1.06.2.2. Theory -- 1.06.2.3. Continuous wave (CW) EPR spectroscopy -- 1.06.2.3.1. X-band EPR spectroscopy -- 1.06.2.3.2. High field EPR -- 1.06.2.4. Pulsed EPR spectroscopy -- 1.06.3. Magnetic circular dichroism (MCD) spectroscopy -- 1.06.3.1. Introduction -- 1.06.3.2. Theory -- 1.06.3.3. Applications -- 1.06.4. X-ray absorption spectroscopy -- 1.06.4.1. Introduction -- 1.06.4.2. Theory -- 1.06.4.3. Applications -- 1.06.5. Nuclear magnetic resonance -- 1.06.5.1. Introduction -- 1.06.5.2. Theory -- 1.06.5.3. Applications -- 1.06.6. Conclusion -- References -- Computational Methods in Organometallic Chemistry -- 1.07.1. Introduction. , 1.07.2. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) -- 1.07.2.1. Functional -- 1.07.2.2. Basis set -- 1.07.2.3. Additional considerations -- 1.07.2.4. Beginning calculations -- 1.07.2.4.1. Geometries and geometry optimization -- 1.07.2.4.2. Single point calculation -- 1.07.2.4.3. Software and common programs -- 1.07.2.5. Closed Shell systems and restricted Kohn-Sham (RKS) -- 1.07.2.6. Open Shell systems and unrestricted Kohn-Sham (UKS) -- 1.07.2.7. Broken symmetry calculations -- 1.07.2.7.1. Case study 1: Broken symmetry calculations of (iPrPDI)FeN2 -- 1.07.2.8. Determining the correct solution -- 1.07.2.9. F-elements -- 1.07.2.10. Limitations of DFT -- 1.07.3. Ab initio methods -- 1.07.3.1. Case study 2: Multiconfigurational calculations of an iron nitrosyl complex -- 1.07.4. Configuration interaction/multiplet calculations -- 1.07.4.1. Simple configuration interaction model for spectroscopy -- 1.07.4.2. Charge transfer model for spectroscopy -- 1.07.4.2.1. Case study 3: Multiplet theory for quantifying lanthanide covalency -- 1.07.5. Experimental applications -- 1.07.5.1. Benchmarking computations with experimental data -- 1.07.5.2. UV-visible spectroscopy -- 1.07.5.2.1. Case study 4: Calculated photodynamics and UV-visible spectroscopy in a ruthenium nitrosyl complex -- 1.07.5.3. Infrared spectroscopy -- 1.07.5.3.1. Case study 5: DFT calculations of infrared spectra for iron nitrosyl complexes -- 1.07.5.4. Nuclear magnetic resonance spectroscopy -- 1.07.5.4.1. Case study 6: Computationally predicting olefin metathesis intermediates with 13C NMR spectroscopy -- 1.07.5.5. Electron paramagnetic resonance spectroscopy -- 1.07.5.5.1. Computational methods for electron paramagnetic resonance spectroscopy -- 1.07.5.5.2. Case study 7: Electron paramagnetic resonance spectroscopy of Ti3+-Al and Th3+-Al bimetallics. , 1.07.5.6. Magnetism -- 1.07.5.6.1. Case study 8: Electronic structures of plutonium single molecule magnets -- 1.07.5.7. Mössbauer spectroscopy -- 1.07.5.7.1. Computational methods for Mössbauer spectroscopy -- 1.07.5.7.2. Case study 9: Mössbauer spectroscopy of (iPrPDI)Fe(N2)2 -- 1.07.5.8. X-ray absorption spectroscopy (XAS) -- 1.07.5.8.1. Computational methods for X-ray absorption spectroscopy -- 1.07.5.8.2. Case study 10: Ni K-edge X-ray absorption spectroscopy of (iPr2NNF6)NiNO -- 1.07.5.8.3. Case study 11: Ligand K-edge X-ray absorption spectroscopy for evaluating lanthanide covalency -- 1.07.5.9. X-ray emission spectroscopy (XES) -- 1.07.5.9.1. Case study 12: Evaluating XES capabilities for probing NO coordination modes and reduction -- 1.07.6. Mechanism -- 1.07.6.1. Computational methods for calculating reaction mechanisms -- 1.07.6.1.1. Case study 13: Mechanism of CCO2 bond formation at Cu, Rh and Pd -- 1.07.7. Current limitations and outlook -- 1.07.7.1. Case study 14: The ever elusive Grignard reaction -- Acknowledgment -- References -- f-Element Organometallic Single-Molecule Magnets -- 1.08.1. Introduction -- 1.08.1.1. Single-molecule magnetism -- 1.08.2. Single-molecule magnetism in lanthanide organometallics -- 1.08.2.1. Lanthanide metallocene single-molecule magnets -- 1.08.2.1.1. SMMs based on [Cp2Ln(μ-X)]n metallocene units -- 1.08.2.1.2. Lanthanide half-sandwich complexes as SMMs -- 1.08.2.1.3. Lanthanide metallocene SMMs with radical bridging ligands -- 1.08.2.1.4. Cationic dysprosium metallocene SMMs [(CpR)2Dy]+ -- 1.08.2.2. Lanthanide single-molecule magnets based on cyclooctatetraene ligands -- 1.08.2.3. Organometallic lanthanide SMMs containing 4-, 6-, or 7-membered rings -- 1.08.2.3.1. Lanthanide SMMs with η4-cyclobutadienyl ligands -- 1.08.2.3.2. Lanthanide SMMs with η6-arene or η7-cycloheptatrienyl ligands. , 1.08.2.4. Lanthanide organometallic SMMs based on σ-bonded ligands.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Inorganic compounds -- Optical properties. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (376 pages)
    Edition: 1st ed.
    ISBN: 9780470686065
    Series Statement: Inorganic Materials Series ; v.14
    DDC: 620.11
    Language: English
    Note: Molecular Materials -- Contents -- Inorganic Materials Series Preface -- Preface -- List of Contributors -- 1 Metal-Based Quadratic Nonlinear Optical Materials -- 1.1 Introduction -- 1.2 Basic Concepts of Second-Order Nonlinear Optics -- 1.2.1 Introduction to Nonlinear Molecular Materials -- 1.2.2 Molecular Engineering of Quadratic NLO Chromophores -- 1.2.3 Experimental Measurements of Second-Order NLO Activities -- 1.3 Dipolar Metal Complexes -- 1.3.1 Metal Complexes as Donor Groups -- 1.3.2 Metal Complexes as Acceptor Groups -- 1.3.3 Bimetallic Push-Pull Complexes -- 1.3.4 Metal Complexes as < -- pi> -- -Conjugated Bridges -- 1.4 Octupolar Metal Complexes -- 1.4.1 Metal as Peripheral Donor (or Acceptor) Substituent -- 1.4.2 Metal as Template -- 1.4.3 Conformational Studies Using Second-Order NLO Activity Measurements -- 1.5 Switching Optical Nonlinearities of Metal Complexes -- 1.5.1 Redox Switching of Quadratic Nonlinearities -- 1.5.2 Acid/Base Switching of Quadratic Nonlinearities -- 1.5.3 Photoswitching of Quadratic Nonlinearities -- 1.6 Towards the Design of Pre-Organised Materials -- 1.6.1 Supramolecular Octupolar Self-Ordering Within Metallodendrimers -- 1.6.2 Engineering of NLO-Active Crystals -- 1.7 Conclusions -- References -- 2 Physical Properties of Metallomesogens -- 2.1 Introduction -- 2.2 Overview of Mesophases -- 2.3 Optical Properties -- 2.3.1 Birefringence -- 2.3.2 Light Absorption and Colour -- 2.3.3 Luminescence -- 2.3.4 Nonlinear Optical Properties -- 2.4 Electrical Properties -- 2.4.1 Electrical Conductivity -- 2.4.2 Photoconductivity -- 2.4.3 Electrochromism -- 2.4.4 Ferroelectricity -- 2.5 Magnetic Properties -- 2.5.1 Magnetic Anisotropy and Alignment in External Magnetic Fields -- 2.5.2 Spin-Crossover Phenomena -- 2.5.3 Single Molecule Magnets -- 2.6 Conclusions -- References -- 3 Molecular Magnetic Materials. , 3.1 Introduction -- 3.1.1 History of Measurements -- 3.2 Basic Concepts -- 3.2.1 Magnetisation and Susceptibility -- 3.2.2 The Curie and Curie-Weiss Laws -- 3.2.3 Other Measurements -- 3.2.4 Orbital Angular Momentum -- 3.3 The Van Vleck Equation -- 3.3.1 Application of the Van Vleck Formula to an Isolated, Spin-Only Metal Complex -- 3.3.2 Deviations from the Curie Law: Zero-Field Splitting -- 3.3.3 Exchange Coupling -- 3.4 Dimensionality of Magnetic Systems -- 3.4.1 Lattice Dimensionality vs Single Ion Anisotropy -- 3.4.2 Mean or Molecular Field Approximation in Any Dimension and Any Value of S -- 3.4.3 One-Dimensional Systems -- 3.4.4 Two-Dimensional Magnetic Materials -- 3.4.5 Three-Dimensional Magnetic Materials -- 3.5 Switchable and Hybrid Systems and Future Perspectives -- 3.5.1 Bistable and Switchable Magnetic Materials -- 3.5.2 Multifunctional Magnetic Materials -- 3.6 Conclusions -- References -- 4 Molecular Inorganic Conductors and Superconductors -- 4.1 Introduction -- 4.2 Families of Molecular Conductors and Superconductors -- 4.2.1 From Molecules to Conductors and Superconductors -- 4.2.2 Organic Metals and Superconductors -- 4.2.3 Transition Metal Complex-Based Conducting Systems -- 4.3 Systems Based on Metal Bis-Dithiolene Complexes -- 4.3.1 Synthesis of Metal Bis-Dithiolene Complexes -- 4.3.2 Synthesis of Conductors and Superconductors Based on Metal Bis-Dithiolene Complexes -- 4.3.3 Superconductors Based on [M(dmit)2] Complexes -- 4.3.4 Conductors Based on Neutral Metal Bis-Dithiolene Complexes -- 4.4 Towards the Application of Molecular Inorganic Conductors and Superconductors -- 4.4.1 Processing Methods -- 4.4.2 Films and Nanowires of Molecular Inorganic Conductors -- 4.5 Conclusions -- Acknowledgements -- References -- 5 Molecular Nanomagnets -- 5.1 Introduction -- 5.2 A Very Brief Introduction to Magnetochemistry -- 5.3 Techniques. , 5.3.1 Magnetometry -- 5.3.2 AC Magnetometry -- 5.3.3 Micro-SQUIDs -- 5.3.4 Specific Heat -- 5.3.5 Torque Magnetometry -- 5.3.6 Electron Paramagnetic Resonance (EPR) Spectroscopy -- 5.3.7 Inelastic Neutron Scattering (INS) -- 5.3.8 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 5.4 Single Molecule Magnets -- 5.4.1 Physics of Single Molecule Magnets -- 5.4.2 Chemistry of Single Molecule Magnets -- 5.5 Emerging Trends -- 5.5.1 Monometallic SMMs -- 5.5.2 Molecular Spintronics -- 5.5.3 Quantum Information Processing -- 5.5.4 Antiferromagnetic (AF) Rings and Chains -- 5.5.5 Magnetocaloric Effect -- 5.5.6 High Symmetry Polyhedra and Spin Frustration -- 5.5.7 Single Chain Magnets -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Inorganic compounds - Spectra. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (356 pages)
    Edition: 1st ed.
    ISBN: 9781118695715
    Series Statement: Inorganic Materials Series
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Inorganic Materials Series Preface -- Preface -- List of Contributors -- Chapter 1 Powder Diffraction -- 1.1 Introduction -- 1.2 The Similarities and Differences between Single-Crystal XRD and Powder XRD -- 1.3 Qualitative Aspects of Powder XRD: Fingerprinting of Crystalline Phases -- 1.4 Quantitative Aspects of Powder XRD: Some Preliminaries Relevant to Crystal Structure Determination -- 1.4.1 Relationship between a Crystal Structure and its Diffraction Pattern -- 1.4.2 Comparison of Experimental and Calculated Powder XRD Patterns -- 1.5 Structure Determination from Powder XRD Data -- 1.5.1 Overview -- 1.5.2 Unit Cell Determination (Indexing) -- 1.5.3 Preparing the Intensity Data for Structure Solution: Profile Fitting -- 1.5.4 Structure Solution -- 1.5.5 Structure Refinement -- 1.6 Some Experimental Considerations in Powder XRD -- 1.6.1 Synchrotron versus Laboratory Powder XRD Data -- 1.6.2 Preferred Orientation -- 1.6.3 Phase Purity of the Powder Sample -- 1.6.4 Analysis of Peak Widths in Powder XRD Data -- 1.6.5 Applications of Powder XRD for In Situ Studies of Structural Transformations and Chemical Processes -- 1.7 Powder Neutron Diffraction versus Powder XRD -- 1.8 Validation of Procedures and Results in Structure Determination from Powder XRD Data -- 1.8.1 Overview -- 1.8.2 Validation before Direct-Space Structure Solution -- 1.8.3 Aspects of Validation following Structure Refinement -- 1.9 More Detailed Consideration of the Application of Powder XRD as a Fingerprint of Crystalline Phases -- 1.10 Examples of the Application of Powder XRD in Chemical Contexts -- 1.10.1 Overview -- 1.10.2 Structure Determination of Zeolites and Other Framework Materials -- 1.10.3 In Situ Powder XRD Studies of Materials Synthesis. , 1.10.4 Structure Determination of New Materials Produced by Solid-State Mechanochemistry -- 1.10.5 In Situ Powder XRD Studies of Solid-State Mechanochemical Processes -- 1.10.6 In Situ Powder XRD Studies of a Polymorphic Transformation -- 1.10.7 In Situ Powder XRD Studies of a Solid-State Reaction -- 1.10.8 Establishing Details of a Hydrogen-Bonding Arrangement by Powder Neutron Diffraction -- 1.10.9 Structure Determination of a Material Produced by Rapid Precipitation from Solution -- 1.10.10 Structure Determination of Intermediates in a Solid-State Reaction -- 1.10.11 Structure Determination of a Novel Aluminium Methylphosphonate -- 1.10.12 Structure Determination of Materials Prepared by Solid-State Dehydration/Desolvation Processes -- 1.10.13 Structure Determination of the Product Material from a Solid-State Photopolymerisation Reaction -- 1.10.14 Exploiting Anisotropic Thermal Expansion in Structure Determination -- 1.10.15 Rationalisation of a Solid-State Reaction -- 1.10.16 Structure Determination of Organometallic Complexes -- 1.10.17 Examples of Structure Determination of Some Polymeric Materials -- 1.10.18 Structure Determination of Pigment Materials -- 1.11 Concluding Remarks -- References -- Chapter 2 X-Ray and Neutron Single-Crystal Diffraction -- 2.1 Introduction -- 2.2 Solid-State Fundamentals -- 2.2.1 Translation Symmetry -- 2.2.2 Other Symmetry -- 2.2.3 An Introduction to Non-Ideal Behaviour -- 2.3 Scattering and Diffraction -- 2.3.1 Fundamentals of Radiation and Scattering -- 2.3.2 Diffraction of Monochromatic X-Rays -- 2.3.3 Diffraction of Polychromatic X-Rays -- 2.3.4 Diffraction of Neutrons -- 2.3.5 Some Competing and Complicating Effects -- 2.4 Experimental Methods -- 2.4.1 Radiation Sources -- 2.4.2 Single Crystals -- 2.4.3 Measuring the Diffraction Pattern -- 2.4.4 Correcting for Systematic Errors -- 2.5 Structure Solution. , 2.5.1 Direct Methods -- 2.5.2 Patterson Synthesis -- 2.5.3 Symmetry Arguments -- 2.5.4 Charge Flipping -- 2.5.5 Completing a Partial Structure Model -- 2.6 Structure Refinement -- 2.6.1 Minimisation and Weights -- 2.6.2 Parameters, Constraints and Restraints -- 2.6.3 Refinement Results -- 2.6.4 Computer Programs for Structure Solution and Refinement -- 2.7 Problem Structures, Special Topics, Validation and Interpretation -- 2.7.1 Disorder -- 2.7.2 Twinning -- 2.7.3 Pseudosymmetry, Superstructures and Incommensurate Structures -- 2.7.4 Absolute Structure -- 2.7.5 Distinguishing Element Types, Oxidation States and Spin States -- 2.7.6 Valence Effects -- 2.7.7 Diffraction Experiments under Non-Ambient Conditions -- 2.7.8 Issues of Interpretation and Validation -- Software Acknowledgements -- References -- Chapter 3 PDF Analysis of Nanoparticles -- 3.1 Introduction -- 3.2 Pair Distribution Function -- 3.3 Data Collection Strategies -- 3.4 Data Treatment -- 3.4.1 Calculation of G(r) from a Structural Model -- 3.4.2 Data Modelling -- 3.5 Examples -- 3.5.1 Local Disorder versus Long-Range Average Order -- 3.5.2 ZnSe Nanoparticle -- 3.5.3 Decorated ZnO Nanoparticle -- 3.6 Complementary Techniques -- References -- Chapter 4 Electron Crystallography -- 4.1 Introduction -- 4.2 Crystal Description -- 4.2.1 Fourier Transformation and Related Functions -- 4.2.2 Lattices -- 4.2.3 Crystals and Crystal Structure Factors -- 4.2.4 Simple Description of Babinets Principle -- 4.3 Electron Microscopy -- 4.3.1 Interaction between Electrons and Matter -- 4.3.2 Scanning Electron Microscopy -- 4.3.3 Transmission Electron Microscopy -- 4.4 Electron Diffraction -- 4.4.1 X-Rays (Photons) versus Electrons -- 4.4.2 Scattering Power of an Atom -- 4.4.3 Crystal Structure and Electron Diffraction -- 4.4.4 Relationship between Real and Reciprocal Space. , 4.4.5 Friedels Law and Phase Restriction -- 4.4.6 Information on the 0th, 1st and Higher-Order Laue Zone -- 4.4.7 Determining Unit Cell Dimensions and Crystal Symmetry -- 4.4.8 Convergent Beam Electron Diffraction -- 4.5 Imaging -- 4.5.1 Crystal Structure and TEM Images -- 4.5.2 Image Resolution -- 4.5.3 Limitation of Structural Resolution -- 4.5.4 Electrostatic Potential and Structure Factors -- 4.5.5 Image Simulation -- 4.6 The EC Method of Solving Crystal Structures -- 4.6.1 1D Structures -- 4.6.2 2D Structures -- 4.6.3 3D Structures -- 4.7 Other TEM Techniques -- 4.7.1 STEM and HAADF -- 4.7.2 Electron Tomography -- 4.7.3 3D Electron Diffraction -- 4.8 Conclusion -- Acknowledgment -- References -- Chapter 5 Small-Angle Scattering -- 5.1 Introduction -- 5.2 General Principles of SAS -- 5.2.1 Momentum Transfer -- 5.2.2 Differential Scattering Cross-Section -- 5.2.3 Non-Interacting Systems -- 5.2.4 Influence of Polydispersity -- 5.2.5 Asymptotic Forms of I(q) -- 5.2.6 Multilevel Structures -- 5.2.7 Non-Particulate Systems -- 5.2.8 Structure Factor of Interactions -- 5.2.9 Highly Ordered Structures -- 5.3 Instrumental Set-Up for SAXS -- 5.3.1 Synchrotron Source -- 5.3.2 X-Ray Optics -- 5.3.3 X-Ray Detectors -- 5.3.4 SAXS Instrument Layout -- 5.4 Instrumental Set-Up for SANS -- 5.4.1 Neutron Sources -- 5.4.2 Neutron Optics -- 5.4.3 Neutron Detectors -- 5.4.4 SANS Instrument Layout -- 5.5 Additional Requirements for SAS -- 5.5.1 Combination with Wide-Angle Scattering -- 5.5.2 Instrumental Smearing Effects -- 5.5.3 Sample Environments -- 5.6 Application of SAS Methods -- 5.6.1 Real-Time and In Situ Studies -- 5.6.2 Ultra Small-Angle Scattering -- 5.6.3 Contrast Variation in SAS -- 5.6.4 Grazing-Incidence SAS -- 5.7 Conclusion -- Acknowledgements -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chemical structure. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9781118681886
    Series Statement: Inorganic Materials Series
    DDC: 543.5
    Language: English
    Note: Cover -- Series Page -- Title Page -- Copyright -- Inorganic Materials Series Preface -- Preface -- List of Contributors -- Chapter 1: Solid-State Nuclear Magnetic Resonance Spectroscopy -- 1.1 Overview -- 1.2 Theoretical Background -- 1.3 Basic Experimental Methods -- 1.4 Calculation of NMR Parameters -- 1.5 Applications of Solid-State NMR Spectroscopy -- 1.6 Commonly Studied Nuclei -- 1.7 NMR of Materials -- 1.8 Conclusion -- References -- Chapter 2: X-ray Absorption and Emission Spectroscopy -- 2.1 Introduction: What is Photon Spectroscopy? -- 2.2 Electronic Structure and Spectroscopy -- 2.3 Calculation of Inner-shell Spectra -- 2.4 Experimental Techniques -- 2.5 Experimental Considerations -- 2.6 Conclusion -- Acknowledgements -- REFERENCES -- Chapter 3: Neutrons and Neutron Spectroscopy -- 3.1 The Neutron and How it is Scattered -- 3.2 Why Neutrons? -- 3.3 Molecular Hydrogen (Dihydrogen) in Porous Materials -- 3.4 Ins and Catalysis -- 3.5 CO2 and SO2 Capture -- 3.6 What Could be Next? -- 3.7 Conclusion -- References -- Chapter 4: Electron Paramagnetic Resonance Spectroscopy of Inorganic Materials -- 4.1 Introduction -- 4.2 Electron Spin in a Magnetic Field -- 4.3 Spin Hamiltonian and symmetry -- 4.4 Principal Types of EPR Spectrum and Their Characteristic Features -- 4.5 Advanced EMR Techniques -- REFERENCES -- Chapter 5: Analysis of Functional Materials by X-ray Photoelectron Spectroscopy -- 5.1 Introduction -- 5.2 Imaging XPS -- 5.3 Time-resolved High-resolution XPS -- 5.4 High- or Ambient-pressure XPS -- 5.5 Applications to Inorganic Materials -- 5.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The design, construction, and use of a furnace from which time-resolved x-ray diffraction data may be measured from reacting mixtures of solids or of solids and liquids is described. The furnace is a vertical tube design, constructed from commercially available components, and can operate at temperatures of up to 1000 °C. The apparatus is designed to heat sample tubes of up to 3 cm diameter. The use of high-intensity synchrotron-generated white-beam x rays allows the tube and its contents to be penetrated; thus x-ray diffraction data can be measured from reactions taking place in laboratory-sized reaction vessels. The energy-dispersive diffraction geometry allows rapid data collection (of the order of seconds); hence reactions can be followed continuously in real time. The use of the furnace is demonstrated by results from experiments performed on Station 16.4 of the Daresbury Synchrotron Radiation Source, UK. Two distinct reaction types are studied, both used to prepare the layered perovskite RbCa2Nb3O10: first, a solid state route at 800 °C and second a flux route, performed in molten RbCl, also at 800 °C. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Organometallics 14 (1995), S. 3461-3474 
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...