GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nonnotte, Philippe; Ceuleneer, Georges; Benoit, Mathieu (2005): Genesis of andesitic-boninitic magmas at mid-ocean ridges by melting of hydrated peridotites: Geochemical evidence from DSDP Site 334 gabbronorites. Earth and Planetary Science Letters, 236(3-4), 632-653, https://doi.org/10.1016/j.epsl.2005.05.026
    Publication Date: 2023-12-02
    Description: The gabbronoritic cumulates drilled at DSDP Site 334 (Mid-Atlantic Ridge off the FAMOUS area) are neither crystallization products of the associated basalts, nor from any MORB composition documented along ocean ridges. Their parent melts are richer in SiO2 than MORB at a given MgO content, as attested by the crystallization sequence starting with an olivine+calcic and sub-calcic pyroxene assemblages. These melts are issued from a source highly depleted in incompatible elements, likely residual peridotite left after MORB extraction. To understand the role of water in the genesis of these lithologies whose occurrence in a mid-ocean ridge setting is rather puzzling, we performed a geochemical study on clinopyroxene separates following an analytical protocol able to remove the effects of water rock interactions post-dating their crystallization. Accordingly, the measured isotopic signatures can be used to trace magma sources. We find that Site 334 clinopyroxenes depart from the global mantle correlation: normal MORB values for the 143Nd/ 144Nd ratio (0.51307-0.51315) are associated to highly radiogenic 87Sr / 86Sr (0.7034-0.7067) ratios. This indicates that the parent melts of Site 334 cumulates are issued from a MORB source but that seawater contamination occurred at some stage of their genesis. The extent of contamination, traced by the Sr isotopic signature, is variable within all cumulates but more developed for gabbronorites sensus stricto, suggesting that seawater introduction was a continuous process during all the magmatic evolution of the system, from partial melting to fractional crystallization. Simple masse balance calculations are consistent with a contaminating agent having the characters of a highly hydrated (possibly water saturated) silica-rich melt depleted in almost all incompatible major, minor and trace elements relative to MORB. Mixing in various proportions of contaminated melts similar to the parent melts of Site 334 cumulates with MORB can account for part of the variability in the Sr isotopic signature of oceanic basalts, among other to the short wavelength isotopic ,,noise" superimposed on regional trends. We conclude that seawater introduction into residual peridotite at shallow depth beneath mid-ocean ridges can lead mantle rocks and their melts to follow complex P-T-fH2O paths that mimic petrogenetic contexts classically attributed to subduction zone environments, like the production of boninitic-andesitic magmas.
    Keywords: Aluminium oxide; Anorthite; Barium; Calculated; Cerium; Chromium; Chromium(III) oxide; Clinopyroxene; Cobalt; Deep Sea Drilling Project; DEPTH, sediment/rock; DSDP; DSDP/ODP/IODP sample designation; Dysprosium; Electron microprobe (EMP); Erbium; Europium; Gadolinium; Holmium; ICP-MS, Perkin-Elmer, Elan 6000; Isotope ratio mass spectrometry; Lanthanum; Lanthanum/Samarium ratio; Lanthanum/Ytterbium ratio; Lutetium; Magnesium; Neodymium; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, error; Nickel; Number; Olivine; Ore; Orthopyroxene; Plagioclase; Praseodymium; Rubidium; Samarium; Sample code/label; Sample comment; Sodium oxide; Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Terbium; Thulium; Titanium dioxide; Ytterbium; Yttrium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 614 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: While hydrothermal vents are now thought to be a major source of dissolved iron to the oceans, they have always been considered to be a sink for the dissolved rare-earth elements (DREEs). However, true dissolved REE observations in hydrothermal plumes are still lacking. Here we report for the first time the DREE concentrations and neodymium isotopic compositions (DεNd) of buoyant hydrothermal fluids at Lucky Strike (Mid-Atlantic Ridge). We find that 27 to 62% of total hydrothermal DREEs are rapidly scavenged by anhydrite precipitation at the onset of buoyant plume formation. After this initial loss, all DREEs behave quasi-conservatively within the buoyant plume. Dissolved phase εNd (DεNd) in the evolving plume are identical to black smoker DεNd of +9.0 and contrast radically with DεNd of the local deep water mass at −12.0. Plume DεNd as low as +6.6 may be reconciled by dissolution of newly formed barite in the local environment and carrying seawater DεNd signature. We find, based on the first plume DREE observations, that hydrothermal plumes are in fact a source of DREE to the North Atlantic Deep Water. Precipitation/dissolution processes of hydrothermally-derived minerals, i.e. sulfates in the buoyant plume and Fe oxy-hydroxide in the non-buoyant plume, will likely affect the fate of other trace metals and their isotopic composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...