GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Nanotechnology-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (404 pages)
    Edition: 1st ed.
    ISBN: 9780323983471
    Series Statement: Micro and Nano Technologies Series
    Language: English
    Note: Front Cover -- Advances in Nanotechnology for Marine Antifouling -- Advances in Nanotechnology for Marine Antifouling -- Copyright -- Contents -- Contributors -- 1 - Biofouling: current status and challenges -- 1.1 Introduction -- 1.2 Microbiology and biofouling -- 1.2.1 Historical background -- 1.3 Classification of biofouling -- 1.3.1 Microbiofouling -- 1.3.2 Macrobiofouling -- 1.4 Steps of biofouling -- 1.5 Factors affecting biofouling -- 1.5.1 Temperature -- 1.5.2 pH -- 1.5.3 Oxygen supply -- 1.5.4 Divergence of species -- 1.5.5 Sunlight -- 1.6 Industries and biofouling -- 1.6.1 Shipping industry -- 1.6.2 Medical industry -- 1.6.3 Power industry -- 1.6.4 Automobile industry -- 1.6.5 Plastics industry -- 1.6.6 Nutrition industry -- 1.7 Need of the hour -- 1.8 Conclusions -- References -- 2 - Bioinspired antifouling coatings with topographies -- 2.1 Introduction -- 2.1.1 Marine biofouling -- 2.1.2 Biofouling mechanisms -- 2.1.3 Conventional antifouling strategies -- 2.1.4 Modern bioinspired strategies -- 2.2 Bioinspired antifouling coatings with topographies -- 2.2.1 Coatings with micro- and nanostructured topographies -- 2.2.1.1 Antifouling mechanisms of micro- and nanostructured surfaces -- 2.2.1.2 Bioinspired micro- and nanostructured coatings for combating biofouling -- Lotus-inspired coatings -- Shark-inspired coatings -- Shell-inspired coatings -- Mangrove-inspired coatings -- 2.2.2 Coatings with macroscopic topographies -- 2.2.2.1 Coatings inspired by terrestrial organisms -- 2.2.2.2 Coatings inspired by marine organisms -- 2.3 Conclusion -- References -- 3 - Bionic marine antifouling coating -- 3.1 Introduction -- 3.2 Biofouling -- 3.2.1 Fouling process -- 3.2.2 Main antifouling strategies -- 3.3 Bionic antifouling strategy -- 3.3.1 Natural antifouling agent -- 3.3.1.1 Antifouling agents derived from marine organisms. , 3.3.1.2 Antifouling agents derived from terrestrial organisms -- 3.3.2 Antibacterial coating of quaternary ammonium salt-guanidine compound -- 3.3.3 Self-polishing antifouling coating -- 3.3.4 Photocatalytic antibacterial coating -- 3.3.5 Antimicrobial peptides -- 3.4 Bionic fouling release strategy -- 3.4.1 Low-surface energy surface (organic fluorine/silicone) -- 3.4.1.1 Silicone coating -- 3.4.1.2 Organic fluorine coating -- 3.4.2 Superhydrophobic self-cleaning surface -- 3.4.3 Hydrophilic surface -- 3.4.4 Amphipathic surface -- 3.4.5 Bionic surface with microstructure -- 3.4.6 Microphase separation structure surface -- 3.4.7 Bionic slippery liquid-infused surface -- 3.4.8 Bionic fluorescent coating -- 3.5 Other bionic strategies -- 3.5.1 Electrocatalytic antifouling -- 3.6 Summary and outlook -- References -- 4 - Zwitterionic antifouling coating -- 4.1 Introduction -- 4.2 Chemical structure -- 4.3 Preparation of zwitterionic antifouling coatings -- 4.3.1 Monomeric zwitterionic antifouling coatings -- 4.3.2 Polymeric zwitterionic antifouling coatings -- 4.3.3 Zwitterion-based amphiphilic antifouling coatings -- 4.3.4 Degradable zwitterionic coatings -- 4.3.5 Other strategies -- References -- 5 - Beyond the marine antifouling activity: the environmental fate of commercial biocides and other antifouling age ... -- 5.1 Introduction -- 5.2 Physicochemical properties -- 5.2.1 Water solubility -- 5.2.2 Octanol-water partition -- 5.2.3 Vapor pressure -- 5.3 Environmental fate properties -- 5.3.1 Sediment-water partition -- 5.3.2 Bioconcentration factor -- 5.4 Leaching and release rate -- 5.5 Persistence -- 5.5.1 Hydrolysis -- 5.5.2 Photolysis -- 5.5.3 Biodegradation -- 5.5.4 Identification of transformation products and pathways -- 5.6 Ecotoxicity assessment -- 5.7 Conclusion -- Funding -- References. , 6 - Ceramic polymer nanocomposites as eco-friendly marine antifouling coatings -- 6.1 Introduction -- 6.2 Marine fouling organisms -- 6.3 Costs of marine biofouling -- 6.4 Antifouling coating methods -- 6.5 Nonstick fouling-release coating approach -- 6.5.1 Fluoropolymeric fouling-release coatings -- 6.5.2 Silicone-based fouling-release coatings -- 6.6 Biomimetic antifouling methods -- 6.6.1 Superhydrophobicity in nature -- 6.6.2 Characterization of superhydrophobic surfaces -- 6.7 Advanced fouling-release and self-cleaning nanocomposite coatings -- 6.7.1 Silicone reinforced with ceramic nanofillers -- 6.7.2 Silicone-graphene-ceramic nanocomposites -- 6.8 Conclusions -- References -- 7 - Biodiversity of deep ocean on development of biofilms: Biofouling communities and corrosion performance of mate ... -- 7.1 Introduction -- 7.2 Variations in temperature, pressure, and oxygen with depth and their influence on biodiversity -- 7.3 Ocean microbiome and metagenomics of deep-sea planktonic and biofilm communities -- 7.4 Hydrothermal vent ecosystem -- 7.5 Cold seep/knoll and continental slope ecosystem -- 7.6 Seamount ecosystems -- 7.7 Corrosion performance of metals and alloys in deep-sea environment -- 7.8 Conclusions -- References -- 8 - Biofouling in the petroleum industry -- 8.1 Introduction -- 8.2 Field development and petroleum infrastructure -- 8.2.1 Upstream structures -- 8.2.2 Midstream and downstream equipment -- 8.3 Biofilm formation -- 8.3.1 Facilitating conditions -- 8.3.1.1 Temperature of seawater -- 8.3.1.2 Seawater zone -- 8.3.1.3 Currents and distance to shore -- 8.3.1.4 Substrata -- 8.3.2 Communication among microorganisms -- 8.4 Macrobiofoulers -- 8.5 Oil reservoirs and microorganisms -- 8.5.1 Microbial communities in oil reservoirs -- 8.5.1.1 Sulfate-reducing bacteria -- 8.5.1.2 Fermentative ARBs -- 8.5.2 Bioclogging in oil reservoirs. , 8.5.3 Produced water -- 8.6 Midstream and downstream -- 8.6.1 Pipelines -- 8.6.2 Fuel tanks -- 8.6.3 Risk assessment and monitoring structural biofouling -- 8.7 Conventional biofouling treatment process -- 8.8 Conclusion -- References -- 9 - Polymer/graphene-derived nanocomposites as advanced marine antifouling coatings -- 9.1 Introduction -- 9.2 Developing of maritime fouling -- 9.3 Graphene and graphene-based materials -- 9.4 Synthesis of graphene materials -- 9.4.1 Exfoliation and mechanical cleavage -- 9.4.2 Chemical exfoliation -- 9.4.3 Chemical vapor deposition -- 9.5 Graphene-derived nanocomposites -- 9.6 Graphene materials are used to create superhydrophobic surfaces -- 9.6.1 Solution casting method -- 9.6.2 Melt-blending method -- 9.6.3 In situ polymerization method -- 9.6.4 Electrospinning -- 9.6.5 Electrodeposition -- 9.7 Polymer-graphene materials and their interactions -- 9.8 Graphene-based nanocomposites for fouling-release coatings -- 9.9 Conclusions and outlooks -- References -- 10 - Nanoparticles as an exotic antibacterial, antifungal, and antiviral agents -- 10.1 Introduction -- 10.2 Metal-based nanomaterials -- 10.2.1 Gold nanoparticles -- 10.2.2 Silver nanoparticles -- 10.2.2.1 Mechanism of antiviral and antimicrobial activity -- 10.2.2.2 Silver v SARS-CoV-2 -- 10.2.2.3 Food packaging -- 10.2.3 Other metallic nanoparticles -- 10.3 Metal oxide-based nanomaterials -- 10.3.1 Disinfection of SARS-CoV-2 by metal oxides -- 10.3.2 Metal oxide nanoparticles in textiles -- 10.3.3 Metal oxide nanoparticles for food packaging -- 10.4 Carbon-based nanomaterials -- 10.4.1 Graphene and its derivatives -- 10.4.2 Fullerene -- 10.4.2.1 Antiviral mechanism of fullerene -- 10.4.2.2 Antimicrobial mechanism of fullerene -- 10.4.3 Polymeric nanomaterials -- 10.5 Conclusion -- Acknowledgments -- References. , 11 - Nanomaterial-based smart coatings for antibacterial, antifungal, and antiviral activities -- 11.1 Introduction -- 11.2 Strategies for antimicrobial surfaces -- 11.2.1 Contact-killing coatings -- 11.2.2 Antiadhesion/microbial repelling coatings -- 11.2.3 Release-based coatings -- 11.2.4 Multifunctional coatings -- 11.3 Nanomaterials in antimicrobial and antiviral smart coating -- 11.3.1 Inorganic nanomaterials -- 11.3.2 Organic nanomaterials -- 11.4 Application of nanomaterial-based antimicrobial and antiviral smart coatings -- 11.4.1 Medical devices -- 11.4.2 Health care facilities -- 11.4.3 Textiles -- 11.4.4 Food packaging -- 11.4.5 Industrial equipment -- 11.5 Challenges and future perspectives -- 11.6 Conclusion -- References -- 12 - Polymeric antibacterial, antifungal, and antiviral coatings -- 12.1 Introduction -- 12.2 Antimicrobial polymer coatings -- 12.3 Antimicrobial biopolymer coatings -- 12.4 Protein-based antimicrobial surfaces -- 12.5 Metal-based coating as antimicrobial disinfectant -- 12.6 Mode of action in antimicrobial polymer coatings -- 12.7 Applications -- 12.7.1 Applications of antibacterial polymeric coatings -- 12.7.2 Applications of antifungal polymeric coatings -- 12.7.3 Applications of antiviral coatings -- 12.8 Challenges -- 12.9 Safety concerns and risk mitigation -- 12.10 Conclusion and future outlook -- References -- 13 - Antifouling mechanisms in and beyond nature: leverages in realization of bioinspired biomimetic antifouling co ... -- 13.1 Introduction -- 13.2 Biofouling in the marine environment -- 13.3 Wettability concepts -- 13.4 Developments in polymeric antifouling coatings -- 13.5 Natural superhydrophobic surfaces and mechanisms of bioinspired wettability -- 13.6 Effect of topographies and textures and biomimetic approaches investigated -- 13.7 Self-cleaning surfaces. , 13.8 Development of bioinspired slippery liquid-infused surfaces.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Verteiltes System ; Rechenzentrum ; Orchestration ; Eindringerkennung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (39 Seiten, 4,08 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 16KIS0481 , Verbundnummer 01168408 , Weiter Autoren dem Berichtblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Aachen : MAT.TRAFFIC GmbH
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (35 Seiten, 2,09 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 16EMO0145. - Verbund-Nummer 01165265 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (78 S., 2,72 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMWi 16IN0693 - 16IN0694. - Verbund-Nr. 01067733. - Die Vorlage enth. insgesamt 2 Werke. - [Engl. Titel: Milling of large natural stone workpieces by use of industrial robots] , Förderkennzeichen BMWi 16IN0693 - 16IN0694. - Verbund-Nr. 01067733. - Die Vorlage enth. insgesamt 2 Werke , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden. - Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Magnetism. ; Electronic books.
    Description / Table of Contents: Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (335 pages)
    Edition: 1st ed.
    ISBN: 9781000781908
    Series Statement: Series in Materials Science and Engineering Series
    DDC: 538/.4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Light pollution. ; Electronic books.
    Description / Table of Contents: Light is essential for living organisms; however, excessive light causes adverse health issues. This book covers the state-of-the-art progress on nanotechnology for reducing light pollution, discussing many approaches and technologies for controlling light pollution.
    Type of Medium: Online Resource
    Pages: 1 online resource (331 pages)
    Edition: 1st ed.
    ISBN: 9781000641738
    DDC: 363.738
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Editors -- Contributors -- Chapter 1 ◾ Light Pollution and Prevention: An Introduction -- 1.1 Introduction -- 1.1.1 Various Sources Responsible for Light Pollution -- 1.2 The Adverse Impact of Light Pollution -- 1.2.1 Increasing Energy Consumption -- 1.2.2 Ecosystem and Wildlife Disruption -- 1.2.3 The Demise of Baby Turtles -- 1.2.4 Impact on Aquatic Life -- 1.2.5 Devastating Effects of Artificial Light on Bird Species -- 1.2.6 Devastating Effects of Artificial Lights on Plants -- 1.2.7 Devastating Effects of Artificial Lights on Insects -- 1.2.8 Impact on Human Health -- 1.3 Prevention Techniques -- 1.3.1 Smart Cities -- 1.3.2 Smart Lighting -- 1.3.3 Use of LED Light -- 1.4 Innovation Based on Smart Lighting to Reduce Light Pollution -- 1.4.1 Light-Emitting Diode -- 1.4.2 Smart Street Lighting -- 1.4.3 Wireless Communication Technology Lighting -- 1.4.4 Luminaries -- 1.4.5 Artificial Intelligence-Based Lighting -- 1.5 Role of Nanotechnology in the Prevention of Light Pollution -- 1.6 Mitigating Light Pollution by Altering Outdoor Lighting -- 1.6.1 Employ LPS or LED Lights -- 1.6.2 The Light Should Be Directed Where It is Required -- 1.6.3 Lights with Bulb Caps and Shields Should Be Purchased -- 1.6.4 Direct the Light From Your Outdoor Lights Downward -- 1.6.5 Install Lights that Detect Movement -- 1.6.6 Smart Lighting Should Be Installed -- 1.7 Initiatives to Prevent Light Pollution -- 1.8 Challenges and Future Outlooks -- 1.9 Conclusion -- References -- Chapter 2 ◾ Freeform Optics/Nonimaging: An Introduction -- 2.1 Introduction -- 2.2 Design and Working Principle of Free Form -- 2.3 Nonimaging Optics for the Solution of Light Pollution -- 2.4 Freeform Optics in Optical Industries -- 2.5 Freeform Optics in Street Light and Automobile Transportation. , 2.6 Freeform Optics in Space Application -- 2.7 Freeform Optics for Other Industries -- 2.8 Advantages of Freeform Optic Surface -- 2.9 Limitations of Freeform Optic Surface -- 2.10 Summary -- References -- Chapter 3 ◾ Current Status of Light Pollution and Approaches for their Prevention -- 3.1 Introduction -- 3.2 Sources of Light Pollution -- 3.2.1 Billboards -- 3.2.2 Car Headlights -- 3.2.3 Spotlights -- 3.2.4 Street Lights -- 3.2.5 The Consciousness of Light Pollution -- 3.3 Types of Light Pollution -- 3.3.1 Over-Illumination -- 3.3.2 Clutter -- 3.3.3 Light Trespass -- 3.3.4 Skyglow -- 3.3.5 Glare -- 3.4 Impacts of Light Pollution -- 3.4.1 Effects on Human Health and Psychology -- 3.4.2 Effect on Plants -- 3.4.3 Effect on Animals -- 3.4.3.1 Fear of Birds -- 3.4.3.2 Fear to Sea Turtles -- 3.4.3.3 Fear to Fish -- 3.4.4 Effect on Astronomy -- 3.5 Common Impacts -- 3.5.1 Depression and Sleep Disorder -- 3.5.2 Weight Gain and Eating Disorder -- 3.5.3 Tumors -- 3.5.4 Reproductive Output and Pollination -- 3.5.5 Locomotion, Orientation, and Trajectory -- 3.6 Methods to Reduce Light Pollution -- 3.6.1 Light Shields -- 3.6.2 Planning System -- 3.6.3 Sports Arenas -- 3.6.4 Lighthouses -- 3.6.5 Lights at Sea -- 3.6.6 Education -- 3.6.7 Light Restriction and Conservation During the Peak of Fledging -- 3.6.8 Turning Lights off Using a Timer and Occupancy Sensor -- 3.6.9 Alternatives to Road Lighting -- 3.6.10 Full Cut-off Lighting Equipment -- 3.7 Conclusion -- References -- Chapter 4 ◾ Sources, Impact, and Perspective of Light Pollution -- 4.1 Introduction -- 4.2 Light Pollution -- 4.2.1 Light Pollution Caused by Urban Progress -- 4.2.2 Light Pollution Caused by Shift Work -- 4.3 Impacts of Light Pollution on Health -- 4.3.1 Light Pollution-Induced Eye Damage -- 4.3.2 Physiological Impacts of Light Pollution -- 4.3.2.1 Behavioral Effect. , 4.3.2.2 Metabolic Disturbance -- 4.3.2.3 Immunological Dysfunction -- 4.3.2.4 Testosterone Levels (T) -- 4.3.2.5 Locomotor Activity -- 4.3.3 Light Pollution-Induced Cancer Disease -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 ◾ Health Impacts/Risks of Light Pollution -- 5.1 Introduction -- 5.2 Classification of LP -- 5.2.1 Light Trespass -- 5.2.2 Over-illumination -- 5.2.3 Glare -- 5.2.3.1 Blinding Glare -- 5.2.3.2 Disability Glare -- 5.2.3.3 Discomfort Glare -- 5.2.4 Light Clutter -- 5.2.5 SkyGlow -- 5.3 Causes of LP -- 5.3.1 Poor Planning -- 5.3.2 Irresponsible Use -- 5.3.3 Overpopulation -- 5.3.4 Excessive Use of Light -- 5.3.5 Smog and Clouds -- 5.3.6 Nighttime Lightning -- 5.3.7 Downtown Areas -- 5.4 Growth of LP -- 5.5 Adverse Effects of LP -- 5.5.1 Impact on Humans -- 5.5.2 Impact on Astronomy -- 5.5.3 Impact on Plants -- 5.5.4 Impact on Animals -- 5.5.5 Impact on Air Pollution -- 5.5.6 Impact on Economic Sustainability -- 5.6 Fundamentals and Economics of LP -- 5.7 Prevention and Policies of LP -- 5.8 Recommendations to Reduce LPs -- 5.9 Conclusion and Outlook -- References -- Chapter 6 ◾ Light Pollution: Adverse Health Impacts -- 6.1 Introduction -- 6.2 Classification of Light Pollution -- 6.2.1 Anthropogenic Sky Glow -- 6.2.2 Glare -- 6.2.3 Light Trespass -- 6.2.4 Over-illumination -- 6.2.5 Light Clutter -- 6.3 Impact on the Health of Living Beings -- 6.3.1 Consequences of Excessive Artificial Light on Plants -- 6.3.2 Consequences of Excessive Artificial Light on Animals -- 6.3.2.1 Threat to Birds -- 6.3.2.2 Threat to Sea Turtles -- 6.3.2.3 Threat to Fish -- 6.3.3 Consequences of Excessive Artificial Light on Human Health -- 6.3.3.1 Cancer -- 6.3.3.2 Retina of the Eyes/Visual Impairment -- 6.3.3.3 Sleeplessness, Mood, and Fatigue -- 6.3.3.4 Endocrine System -- 6.3.3.5 Fitness and Physique -- 6.3.3.6 Fatality. , 6.4 Causes of Light Pollution -- 6.4.1 Poor Structural Designs -- 6.4.2 Unsystematic Lightning -- 6.4.3 Overpopulation -- 6.4.4 Urbanization -- 6.4.5 Excessive Use of Light Sources -- 6.4.6 Smog, Fog, and Clouds -- 6.4.7 Lack of Awareness -- 6.5 Recommendations for Reduction of Light Pollution -- 6.6 Conclusion -- References -- Chapter 7 ◾ Environmental Aspects of Light Pollution -- 7.1 The Effect of Light on Plants -- 7.2 The Effect of Light on Animals -- 7.2.1 Birds -- 7.2.2 Reptiles -- 7.2.3 Amphibian -- 7.2.4 Fish -- 7.2.5 Invertebrates -- 7.3 The Effect of Light on Humans -- 7.4 Conclusion -- Reference -- Chapter 8 ◾ Social, Economic, and Ecological Impacts of Light Pollution -- 8.1 Introduction -- 8.2 Light Pollution and Its Impacts -- 8.2.1 What is Light Pollution? -- 8.2.2 What are The Sources of Light Pollution? -- 8.2.3 Social Impact of Light Pollution -- 8.2.3.1 Impacts on Livability -- 8.2.3.2 The Socio-cultural Impacts -- 8.2.3.3 Aesthetic Impacts -- 8.2.3.4 Lighting, Crime, and Safety -- 8.2.4 Economic Impacts -- 8.2.5 Ecological Impact -- 8.2.5.1 Impact on Wildlife -- 8.2.5.2 Impact on Plant Species -- 8.3 Discussion -- 8.4 Conclusions -- References -- Chapter 9 ◾ Smart Nanomaterials usage for Artic fi ial Skydome -- 9.1 Introduction -- 9.2 Does Light Pollution Affect the Economy? -- 9.3 Effect of Skydome -- 9.4 Artificial Sky and Control of the Light -- 9.5 Type of Skydome -- 9.5.1 Mirror Box Skydome -- 9.5.2 Reflectors Skydome -- 9.5.3 Illustration of Artificial Skydome -- 9.6 Various Types of Heliodon -- 9.7 Controlling the Skydome Light -- 9.8 Skydome Materials for Improved Lighting -- 9.9 Smart Nanomaterial in Skydome Light Tuning -- 9.10 Summary -- References -- Chapter 10 ◾ Smart Materials and Devices for Human-Centric Lighting -- 10.1 Introduction -- 10.2 Internet of Things for Human-Centric Lighting. , 10.3 Advanced Organic Light-Emitting Diode Lighting for Human-Centric Lighting -- 10.4 Optimizing Spectra and Tunable White Light in Light-Emitting Diode Lighting System for Human-Centric Lighting -- 10.5 Nanostructured Light-Emitting Diode -- 10.6 Nanosensors, Nanodevices, and Wireless Networks in LED Lighting System for HCL -- References -- Chapter 11 ◾ Wireless Nanosensors Network for Light Pollution Control -- 11.1 Introduction -- 11.2 Nanosensors and Light Pollution -- 11.3 The Action of Nanosensors to Detect the Light Pollution -- 11.4 Reduction of Light Pollution by WNSN -- 11.5 Artificial Intelligence and Deep Learning for SWSN -- 11.5.1 AI in Routing and Traffic Management -- 11.5.2 AI in Security and Admission Control -- 11.6 Advantages and Limitations of WNSN Used to Control the Light Pollution -- 11.7 Summary -- References -- Chapter 12 ◾ Smart Wireless Sensor Networks for Street Lighting -- 12.1 Introduction -- 12.2 Light/Optical Sensors -- 12.3 Light Emission Diodes -- 12.4 Smart LED to Save Energy -- 12.5 Light Pollution Reduction Devices -- 12.6 A Drone to Assess Light Pollution -- 12.7 Smart Wireless Sensor Networks for Street Lighting -- 12.8 Conclusion -- References -- Chapter 13 ◾ Photonic Nanodevices and Technologies against Light Pollution -- 13.1 Introduction -- 13.2 Lighting Principles and Terms -- 13.3 Sources of Light Pollution -- 13.4 Impacts of Light Pollution on Life and the Environment -- 13.5 Smart City Against Light Pollution -- 13.6 Types of Photonic Devices to Mitigate Light Pollution -- 13.6.1 Light Sources -- 13.6.1.1 Brief Overview -- 13.6.1.2 LEDs-Efficient Energy Sources against Light Pollution -- 13.6.2 Photodetectors Against Light Pollution -- 13.6.2.1 Photoresistors -- 13.6.2.2 Photodiodes -- 13.6.2.3 Phototransistors -- 13.7 How Photodetectors Act against Light Pollution. , 13.8 Recent Developments of Nanomaterials for Photodetectors Applications.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Biopolymers. ; Polymeric composites. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (475 pages)
    Edition: 1st ed.
    ISBN: 9780443218927
    DDC: 572/.33
    Language: English
    Note: Front Cover -- Chitosan-Based Hybrid Nanomaterials -- Copyright Page -- Contents -- List of contributors -- 1 Basics and fundamentals -- 1 A preface to the chitosan-biopolymer, its origin, and properties -- 1.1 Introduction -- 1.1.1 Biopolymers: proteins, nucleic acids, and polysaccharides -- 1.1.1.1 Proteins -- 1.1.1.2 Nucleic acids (deoxyribonucleic acid and ribonucleic acid) -- 1.1.1.3 Polysaccharides (in nature, there are the most abundant biopolymers) -- 1.2 Technology of polysaccharides -- 1.3 Chitosan: origin and physicochemical properties -- 1.3.1 Biodegradability and biocompatibility of chitosan -- 1.4 Application of chitosan in areas of science, industry, and technology -- 1.4.1 Medicine -- 1.4.2 Agriculture -- 1.4.2.1 Chitosan as a plant growth promoter -- 1.4.2.2 Chitosan in plant defense responses to biotic and abiotic stresses -- 1.4.2.3 Chitosan nanoparticle-based delivery systems for sustainable agriculture -- 1.4.3 Food industry -- 1.4.4 Chitosan for food packing -- 1.4.5 Textile industry -- 1.4.6 Dyeing finishing -- 1.4.7 Environmental protection -- 1.5 Advantages and limitations of chitosan in technological applications -- 1.6 Future trends of chitosan-based materials -- References -- 2 Introduction to chitosan and its nanocomposites -- 2.1 Introduction -- 2.2 Extraction and derivatization of chitin -- 2.2.1 Chemical method -- 2.2.2 Biological method -- 2.2.3 Radiation method -- 2.2.3.1 Ultrasound waves -- 2.2.3.2 Microwaves -- 2.2.4 Other methods -- 2.3 Functionalization of chitosan -- 2.3.1 Modifications on NH2 -- 2.3.2 Modifications on OH -- 2.3.3 Oxidative cleavage -- 2.3.4 Noncovalent modifications -- 2.4 Desirable properties of chitosan -- 2.4.1 Surface modification -- 2.4.2 Mechanical properties and film-forming capacity -- 2.4.3 Antimicrobial activity -- 2.4.4 Thermal stability -- 2.4.5 Nontoxicity and biocompatibility. , 2.4.6 Biodegradability -- 2.4.7 Chelating properties -- 2.5 Applications of chitosan -- 2.5.1 Wastewater and soil decontamination -- 2.5.2 Agricultural applications -- 2.5.3 Fuel cells technology -- 2.5.4 Packaging and food industry -- 2.5.5 Biological applications -- 2.5.5.1 Controlled drug delivery systems -- 2.5.6 Tissue-engineering -- 2.6 Conclusion -- References -- 3 Chitosan-based nanomaterials: structure, characterization, and applications -- 3.1 Introduction -- 3.2 Chitosan structure -- 3.3 Chitosan and chitosan-based nanomaterial characterization -- 3.3.1 Physicochemical properties of chitosan-based nanomaterials -- 3.3.2 Depolymerization of chitosan -- 3.3.3 Characteristics of chitosan's molecular weight and crystalline nature -- 3.3.4 Viscosity and stability of chitosan -- 3.3.5 Chitosan solubility and moisture preserving -- 3.4 Various chitosan-based nanomaterial forms -- 3.4.1 Hydrogels -- 3.4.2 Nanoparticles -- 3.4.3 Microspheres -- 3.5 Emerging applications of chitosan-based nanomaterial -- 3.5.1 Pharmaceutical industries -- 3.5.2 Food industries -- 3.5.3 Cosmetic industries -- 3.5.4 Textile industries -- 3.5.5 Pulp and paper -- 3.5.6 Agriculture sector -- 3.6 Conclusion and future prospects -- References -- 4 Chitosan and its derivatives for nanomaterial formulations: fabrication and physicochemical characterization -- 4.1 Introduction -- 4.2 Types of chitosan-based nanomaterials and their applications -- 4.2.1 Nanoparticles -- 4.2.2 Nanocomposites -- 4.2.3 Nanofibers and nanowires -- 4.3 Chitosan and its derivatives: physicochemical properties, nanomaterial efficiency, and applications -- 4.3.1 Chitosan and thiolated chitosan -- 4.3.2 Alkylated and acylated chitosan -- 4.3.3 Carboxylated chitosan -- 4.3.4 Quaternary chitosan -- 4.4 Surface and physical state analysis of chitosan-based nanomaterials. , 4.5 Novel chitosan-based hybrid nanomaterials -- 4.6 Conclusion and future perspectives -- Conflict of interest -- References -- 5 Chitosan-based nanomaterials, multiple forms, and characterization -- 5.1 Introduction -- 5.1.1 Chitosan-based nanomaterials -- 5.1.2 Morphological forms of chitosan-based nanomaterials -- 5.1.2.1 Nanospheres -- 5.1.2.2 Nanocapsules -- 5.1.2.3 Nanofibers -- 5.1.2.4 Miscellaneous nanostructures -- 5.1.3 Characterization of chitosan-based nanomaterials -- 5.1.3.1 Characterization of particle size, size distribution, and surface charge via dynamic light scattering technique -- 5.1.3.1.1 Particle size and size distribution -- 5.1.3.1.2 Surface charge -- 5.1.3.1.3 Solid-state properties of nanomaterials -- 5.1.3.1.4 X-ray diffraction -- 5.1.3.1.5 Differential scanning calorimetry -- 5.1.3.2 Interaction analysis of nanomaterials -- 5.1.3.2.1 Fourier-transform infrared spectroscopy -- 5.1.3.2.2 Nuclear magnetic resonance spectroscopy -- 5.1.3.3 Elemental analysis of nanomaterials -- 5.1.3.3.1 X-ray photoelectron spectroscopy -- 5.1.3.3.2 Atomic absorption spectroscopy -- 5.1.3.4 Surface and internal properties of nanomaterials -- 5.1.3.4.1 Transmission electron microscopy -- 5.1.3.4.2 Atomic force microscopy -- 5.1.3.4.3 Scanning electron microscopy -- 5.1.3.4.4 Cryogenic scanning electron microscopy and transmission electron microscopy -- 5.1.3.5 Characterization of the composition of encapsulated compounds -- 5.1.3.5.1 Encapsulation efficiency and loading capacity -- 5.1.4 Concluding remarks and future directions -- References -- 6 Degradability of chitosan nanostructures in the natural environment -- 6.1 Biodegradation -- 6.2 Chitosan biodegradation -- 6.3 Chitosan degradation methods in an environment -- 6.3.1 Chemical method -- 6.3.2 Physical method -- 6.3.3 Biological method -- 6.3.4 Microbial chitosan degradation. , 6.4 Degradation of chitosan nanostructure -- 6.4.1 Mechanism of chitosan nanostructure degradation -- 6.4.2 Aerobic and anaerobic biodegradation of chitosan nanostructure -- 6.4.3 Hydrolysis -- 6.4.4 Degradation studies of chitosan nanostructure -- References -- 2 Emerging applications of chitosan-based nanomaterial -- 7 Emerging applications of chitosan-based nanomaterials -- 7.1 Introduction -- 7.2 Physiochemical properties of chitosan -- 7.2.1 Solubility -- 7.2.2 Fat-binding capacity -- 7.2.3 Water-binding capacity -- 7.2.4 Ash -- 7.2.5 Average molecular weight -- 7.2.6 Chitosan deacetylation degree -- 7.3 Chitosan modification -- 7.3.1 Physical modification -- 7.3.2 Chemical modification -- 7.3.3 Enzymatic modification -- 7.4 Preparation of chitosan nanoparticles -- 7.4.1 Micellar reversal procedure -- 7.4.2 Gelation ionotropic -- 7.5 Various types of chitosan-based nanomaterials -- 7.5.1 Nanoparticles -- 7.5.2 Microspheres -- 7.6 Application of chitosan nanoparticles -- 7.6.1 Water treatment -- 7.6.2 Medicine and pharmaceutics -- 7.6.3 Antibacteria -- 7.6.4 Biosensor -- 7.6.5 Agriculture -- 7.7 Conclusion and future perspectives -- References -- 8 Chitosan-based nanomaterials in the decontamination of hydrocarbons -- 8.1 Introduction -- 8.2 Background and significance -- 8.2.1 Significance -- 8.2.2 Scope and objectives -- 8.3 Objectives -- 8.4 Chitosan: an overview -- 8.4.1 Structure and properties -- 8.4.2 Sources and extraction method -- 8.4.2.1 Sources of chitosan -- 8.4.2.2 Extraction methods -- 8.5 Synthesis and characterization of chitosan-based hybrid nanoparticles -- 8.5.1 Chitosan-metal nanoparticles -- 8.5.1.1 Synthesis method of chitosan-metal nanomaterials -- 8.5.1.2 Surface modification of chitosan-metal nanomaterials -- 8.5.2 Chitosan carbon nanomaterials -- 8.5.2.1 Synthesis methods -- 8.5.2.2 Surface modification. , 8.6 Introduction to hydrocarbon -- 8.6.1 Adsorption of hydrocarbons -- 8.6.2 Degradation of hydrocarbons -- 8.7 Application of chitosan-based nanomaterial in hydrocarbon decontamination -- 8.7.1 Water remediation -- 8.7.2 Soil remediation -- 8.7.3 Air pollution control -- 8.7.4 Industrial application -- References -- 9 Chitosan and chitosan-based nanomaterials in decontamination of pharmaceutical waste -- 9.1 Introduction -- 9.2 Classification and chemical structures of pharmaceutical compounds -- 9.3 Adsorptive removal of pharmaceutical compounds -- 9.3.1 Chitosan and chitosan-based materials as adsorbents -- 9.3.2 Adsorption behavior of pharmaceutical compounds on chitosan-based materials -- 9.3.3 Adsorption mechanism of pharmaceutical compounds on chitosan-based materials -- 9.3.4 Regeneration of chitosan-based materials -- 9.4 Chitosan-supported organic photoredox catalysts -- 9.4.1 Photocatalytic degradation mechanism of organic pollutants -- 9.4.2 Recent advances and applications -- 9.5 Conclusions and future perspective -- References -- 10 Chitosan-based nanomaterials in decontamination of heavy metals -- 10.1 Introduction -- 10.2 Mechanisms of heavy metal removal by chitosan and its derivatives -- 10.3 Chitosan-based nanomaterials -- 10.3.1 Chitosan nanoparticles -- 10.3.1.1 Chitosan nanoparticle production -- 10.3.1.1.1 Ionotropic gelation -- 10.3.1.1.2 Microemulsion (reverse micellar) method -- 10.3.1.1.3 Emulsification solvent diffusion method -- 10.3.1.1.4 Polyelectrolyte complex -- 10.3.1.2 Magnetic chitosan nanoparticles -- 10.3.2 Chitosan nanofibers -- 10.3.3 Chitosan nanocomposites -- 10.3.3.1 Polymer-grafted chitosan nanocomposite -- 10.3.3.1.1 Cross-linked chitosan-polymer nanocomposite -- 10.3.3.1.2 Biopolymer-grafted chitosan nanocomposites -- 10.3.3.2 Electrospinning chitosan nanofiber composite. , 10.3.3.3 Chitosan-mineral nanocomposite.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiesbaden :Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,
    Keywords: Reliability (Engineering). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (180 pages)
    Edition: 1st ed.
    ISBN: 9783658269494
    Series Statement: AutoUni - Schriftenreihe Series ; v.140
    Language: English
    Note: Intro -- Contents -- List of Figures -- List of Tables -- List of Algorithms -- List of Acronyms -- Abstract -- Zusammenfassung -- 1 Introduction -- 1.1 Motivation and Challenges -- 1.2 Application Problem -- 1.3 Research Gaps and Contributions -- 2 Related Work -- 2.1 Modalities for Ego-Lane Estimation -- 2.1.1 Lane Markings -- 2.1.2 Trajectories of Leading Vehicles -- 2.1.3 Free Space Detection -- 2.1.4 GPS and Digital Maps -- 2.1.5 End-to-End Road Estimation -- 2.2 Multi-Source Fusion within Road Estimation -- 2.2.1 What is Fusion? -- 2.2.2 Low-Level and Intermediate-Level Fusion -- 2.2.3 High-Level Fusion -- 2.3 Reliability in Fusion of Multiple Sources -- 2.3.1 Information Quality -- 2.3.2 Definition and Assessment of Reliability -- 2.3.3 Integration of Reliability -- 2.4 Conclusion -- 3 Reliability-Based Fusion Framework -- 3.1 Related Work -- 3.2 Basic Idea -- 3.3 Detailed Concept -- 3.3.1 Sensor Setup and Perception Layer -- 3.3.2 Model-based Ego-Lane Estimation -- 3.3.3 Data-Driven Reliability Estimation -- 3.3.4 Reliability-Aware Fusion -- 3.4 Conclusion -- 4 Assessing Reliability for Ego-Lane Detection -- 4.1 Related Work -- 4.1.1 Pixel-based representations -- 4.1.2 Model-based Representations -- 4.2 Concept -- 4.3 Sensor-Independent Performance Measure -- 4.3.1 Requirements -- 4.3.2 Performance Measure Based on Angle Difference -- 4.3.3 Evaluation Framework -- 4.4 Experimental Results -- 4.4.1 Detailed Map versus Human-Driven Path -- 4.4.2 Relation of the metrics -- 4.4.3 Identification of Proper Thresholds for Angle Metrics -- 4.4.4 KPIs for Overall Performance -- 4.5 Conclusion -- 5 Learning Reliability -- 5.1 Concept -- 5.2 Scenario Feature Generation and Selection -- 5.2.1 Sensor-Related Features -- 5.2.2 Consensus Features -- 5.2.3 Contextual Information -- 5.2.4 Feature Selection. , 5.3 Estimating Reliability with Supervised Learning -- 5.3.1 k-Nearest Neighbors (kNN) -- 5.3.2 Decision Tree (DT) -- 5.3.3 Random Forests (RF) -- 5.3.4 Bayesian Network (BN) -- 5.3.5 Mapping Reliability using UTM coordinates (MP) -- 5.3.6 Naive Bayes (NB) -- 5.3.7 Support Vector Machine (SVM) -- 5.3.8 Neural Network (NN) -- 5.4 Experimental Results -- 5.4.1 Evaluation Concept -- 5.4.2 Evaluating Feature Selection -- 5.4.3 Evaluating Reliability Estimation -- 5.5 Conclusion -- 6 Information Fusion -- 6.1 Reliability-Aware Fusion -- 6.1.1 Concept -- 6.1.2 Basic Approaches -- 6.1.3 Advanced Fusion Based on DST and Reliabilities -- 6.2 Direct Fusion Using Neural Networks -- 6.2.1 Concept -- 6.2.2 Reconstruction of Training Dataset for ANNs -- 6.2.3 Structure and Learning Process of ANNs -- 6.3 Experimental Results -- 6.3.1 Evaluation Concept -- 6.3.2 Evaluation Information Fusion -- 6.3.3 Evaluation Fusion Methods in Combination with RF as Reliability Estimator -- 6.4 Conclusion -- 7 Conclusion -- Bibliography -- A Appendix.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Magnetism. ; Electronic books.
    Description / Table of Contents: This book provides fundamentals of low dimensional magnets along with synthesis, theories, structure-property relations, and some applications of ferromagnetic nanomaterials.
    Type of Medium: Online Resource
    Pages: 1 online resource (380 pages)
    Edition: 1st ed.
    ISBN: 9781000640267
    Series Statement: Series in Materials Science and Engineering Series
    DDC: 538
    Language: English
    Note: Cover -- Half Title -- Series -- Title -- Copyright -- Contents -- Editors -- 1 Nanomagnets: Basics, Applications, and New Prospectives -- 2 Nanostructured Magnetic Semiconductors -- 3 Nanowire Magnets: Synthesis, Properties, and Applications -- 4 Synthesis Techniques for Low Dimensional Magnets -- 5 2D Magnetic Systems: Magnetic Properties, Measurement Techniques, and Device Applications -- 6 3D Magnonic Structures as Interconnection Element in Magnonic Networks -- 7 Nanostructured Hybrid Magnetic Materials -- 8 Methods for the Syntheses of Perovskite Magnetic Nanomagnets -- 9 Design of Room Temperature d0 Ferromagnetism for Spintronics Application: Theoretical Perspectives -- 10 Crystal Structures and Properties of Nanomagnetic Materials -- 11 Nanomagnetic Materials: Structural and Magnetic Properties -- 12 Magnetism in Monoatomic and Bimetallic Clusters: A Global Geometry Optimization Approach -- 13 Nanoscale Characterization -- 14 Mathematical Modeling and Simulation of Exchange Coupling Constant (J) and Zero- Field Splitting Parameters (D) -- 15 Novel Magnetism in Ultrathin Films With Polarized Neutron Reflectometry -- 16 Magnetosomes: Biological Synthesis of Magnetic Nanostructures -- 17 Theory and Modeling of Spintronics of Nanomagnets -- 18 Research Trends and Statistical- Thermodynamic Modeling the a"- Fe16N2- Based Phase for Permanent Magnets -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Analytical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (440 pages)
    Edition: 1st ed.
    ISBN: 9780128237281
    Series Statement: Micro and Nano Technologies Series
    DDC: 621.381
    Language: English
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Section 1 - Fundamentals -- 1 - Miniaturization-An introduction to miniaturized analytical devices -- 1.1 Introduction -- 1.2 Miniaturization in analytical chemistry -- 1.2.1 Miniaturization of sample preparation step -- 1.2.1.1 Microextraction -- 1.2.1.2 Microfluidics -- 1.2.2 Miniaturization of separation step -- 1.2.3 Miniaturization of detection methods -- 1.2.3.1 Electrochemical detection -- 1.2.3.2 Optical detection -- 1.3 Conclusions -- References -- 2 - Spectrometric miniaturized instruments -- 2.1 Introduction -- 2.2 Portable spectrometric miniaturized instrument (PSMI) -- 2.2.1 PSMI spectrophotometers -- 2.2.1.1 UV-Vis and UV-Vis-NIR spectrophotometers -- 2.2.1.2 IR spectrophotometer -- 2.2.2 PSMI spectrometers -- 2.2.2.1 Fluorescence spectrometers -- 2.2.2.2 Raman spectrometers -- 2.2.2.3 Elemental spectrometers -- 2.2.2.4 NMR spectrometers -- 2.2.2.5 Mass spectrometers -- 2.3 Smartphone-enabled spectrometric miniaturized instruments -- 2.3.1 Colorimetric SESMIs -- 2.3.2 Photoluminescent SESMIs -- 2.3.3 Biochemiluminescent SESMIs -- 2.4 Conclusions -- References -- 3 - Separation miniaturized instruments -- 3.1 Introduction -- 3.2 Gas chromatography -- 3.3 High pressure/performance liquid chromatography -- 3.4 Capillary electrophoresis -- 3.5 Ion chromatography -- 3.6 Hyphenated separation instruments -- 3.7 Conclusions -- References -- 4 - Fabrication methods of miniaturized analysis -- 4.1 Introduction -- 4.2 Types of miniaturized analysis system -- 4.3 Fabrication methods of paper-based miniaturized analysis system -- 4.4 Fabrication of polymer-based miniaturized analysis system -- 4.5 Fabrication methods of glass-based miniaturized analysis system. , 4.6 Fabrication methods of silicon-based miniaturized analysis system -- 4.7 Challenges and strategies to improve sensitivity, accuracy, multiplexed detection, and calibration free allowing for m ... -- 4.8 Conclusion and future perspectives -- Acknowledgment -- References -- 5 - Miniaturized bioelectrochemical devices -- 5.1 Introduction -- 5.2 Portable bioelectrochemical devices design -- 5.2.1 Principles of potentiostats -- 5.2.2 Power supply -- 5.2.2.1 General power supply devices -- 5.2.2.2 Power supply from body harvesting -- 5.2.2.3 Current readout circuitry -- 5.2.3 Cell configurations -- 5.2.4 Communications -- 5.2.5 A practical example of PBDs -- 5.3 Lab-on-a-chip PBDs devices -- 5.3.1 Implantable PBDs -- 5.3.1.1 Power supply for implantable PBDs -- 5.3.1.2 Communication in implantable PBDs -- 5.3.1.3 Microfluidics in implantable PBDs -- 5.3.1.4 Design considerations of implantable PBDs -- 5.3.2 Wearable PBDs -- 5.3.2.1 Classification of wearable PBDs -- 5.3.2.2 Design considerations of wearable PBDs -- 5.4 Conclusions -- References -- 6 - Electrochemical miniaturized devices -- 6.1 Overview -- 6.1.1 Form factors, application constraints and driving forces -- 6.1.2 Chemical (bio)sensors -- 6.1.3 State of the art -- 6.1.4 Beyond the state of the art -- 6.2 Fundamentals of electrochemical (bio)sensors -- 6.2.1 Electrochemical techniques -- 6.2.1.1 Potentiometry -- 6.2.1.2 Chronoamperometry -- 6.2.1.3 Voltammetry -- 6.2.1.4 Electrochemical impedance spectroscopy -- 6.2.2 Analytes of interest -- 6.2.3 Sensor technologies and fabrication -- 6.3 Instrumentation electronics -- 6.3.1 Integration technologies overview -- 6.3.2 Custom integrated circuits for electrochemical instrumentation -- 6.3.3 Flexible electronics -- References -- 7 - Separation technologies in microfluidics -- 7.1 Introduction. , 7.2 Chemical separations -- 7.3 Particle separations -- 7.3.1 Passive particle separation systems -- 7.3.2 Active particle separation systems -- 7.3.3 Hybrid separation systems -- 7.4 Discussion and conclusion -- References -- 8 - Portable microplanar extraction, separation, and quantification devices for bioanalytical and environmental engineerin ... -- 8.1 Occurrence and quantification of priority substances in water ecosystems-the problem overview based on the European Un ... -- 8.2 Advances in development of portable microdevices for detection of various pollutants in water, sewage, and complex bio ... -- 8.3 Development of portable extraction devices, planar electrophoresis, and microplanar thin-layer chromatography for isol ... -- Authors contributions and additional statements -- References -- 9 - Approaches to microholes for fabrication of microdevices -- 9.1 Introduction -- 9.2 Methods for tool wear improvement -- 9.2.1 CNTs/graphene -- 9.3 Patterning -- 9.4 Embedding -- 9.5 In situ CNT growth -- 9.6 Microhole applications -- 9.7 Conclusions -- References -- 10 - Photonic crystal-based optical devices for photonic intergraded circuits -- 10.1 Introduction -- 10.2 History of photonic crystals -- 10.3 Types of photonic crystals -- 10.3.1 One-dimensional PCs -- 10.3.2 Two-dimensional PCs -- 10.3.2.1 Band diagram -- 10.3.2.2 TE and TM modes -- 10.3.2.3 Gapmaps -- 10.3.2.4 Defects in a 2D photonic crystal lattice -- 10.3.3 Three-dimensional PCs -- 10.3.3.1 Diamond structure -- 10.3.3.2 Yablonovite structure -- 10.3.3.3 Woodpile structure -- 10.3.3.4 Inverse opal structure -- 10.3.3.5 FCC structure -- 10.3.3.6 Square spiral structure -- 10.3.3.7 Scaffolding structure -- 10.3.3.8 Tunable 3D inverse opal structure -- 10.4 Numerical methods -- 10.4.1 PWE method -- 10.4.2 FDTD method. , 10.5 Functional parameters -- 10.5.1 Quality factor ( Q ) -- 10.5.2 Sensitivity ( S ) -- 10.5.3 Resolution ( R ) -- 10.5.4 Detection limit ( D ) -- 10.5.5 Figure of merit (FOM) -- 10.5.6 Transmission efficiency ( ƞ ) -- 10.5.7 Dynamic range (DR) -- 10.5.8 Extinction ratio or contrast ratio -- 10.5.9 Insertion loss and propagation loss -- 10.5.10 Crosstalk -- 10.5.11 Response time and bit rate -- 10.6 Photonic crystal-based demultiplexer -- 10.6.1 Four-channel hybrid DWDM demultiplexer -- 10.6.2 Eight-channel hybrid DWDM demultiplexer -- 10.6.3 DWDM demultiplexer -- 10.7 Applications of 2DPCs -- 10.7.1 Lasers -- 10.7.2 Multiplexer -- 10.7.3 Demultiplexer -- 10.7.4 Waveguide -- 10.7.5 Filters -- 10.7.6 Waveguide splitter -- 10.7.7 Optical sensors -- 10.7.8 Photonic crystal fiber -- 10.7.9 Logic gates -- 10.7.10 Circulators -- 10.8 Conclusion -- References -- Section 2 - Applications of mobile devices in miniaturized analysis -- 11 - Lab-on-a-chip miniaturized analytical devices -- 11.1 Introduction -- 11.2 Lab-on-a-chip devices for clinical diagnostics -- 11.3 Lab-on-a-chip devices for integrated bioanalysis -- 11.3.1 Integrated continuous-flow biosensors -- 11.3.2 Droplet-based microfluidic biosensors -- 11.3.3 Digital microfluidic-based biosensors -- 11.4 Lab-on-a-chip devices for environmental monitoring -- 11.5 Lab-on-a-chip devices for quality control -- 11.5.1 Quality control in food science -- 11.5.2 Quality control in pharmaceutical science -- 11.6 Point-of-care applications -- 11.7 Conclusions -- References -- 12 - Smartphone-enabled miniaturized analytical devices -- 12.1 Introduction -- 12.2 Colorimetric applications -- 12.3 Photoluminescent applications -- 12.4 Biochemiluminescent applications -- 12.5 Electrochemical applications -- 12.6 Point-of-care applications. , 12.6.1 Colorimetric chemical-based detection -- 12.6.2 Fluorescence-based detection -- 12.6.3 Electrochemical-based detection -- 12.7 Implantable sensors -- 12.8 Wearable sensors -- 12.9 Future perspectives -- References -- 13 - Smartphone-based chemical sensors and biosensors for biomedical applications -- 13.1 Introduction -- 13.2 Smartphone-based electrochemistry sensors -- 13.2.1 Amperometry sensors -- 13.2.2 Potentiometry sensors -- 13.2.3 Impedimetry sensors -- 13.3 Smartphone-based spectroscopy sensors -- 13.3.1 Electrochemiluminescence sensors -- 13.3.2 Local surface plasmon resonance sensors -- 13.3.3 Other optical sensors -- 13.4 Smartphone-based wearable sensors for biomedical applications -- 13.4.1 Epidermal sensors -- 13.4.2 Respiration sensors -- 13.4.3 Other wearable sensors -- 13.5 Conclusion and future prospect -- Acknowledgment -- References -- 14 - Biomedical applications of mobile devices in miniaturized analysis -- 14.1 Introduction -- 14.1.1 Features of miniaturization -- 14.2 Miniaturized analytical systems for qualitative information -- 14.2.1 Miniaturized system for clinical sorting and diagnosis -- 14.2.1.1 Miniaturized system for clinical sorting -- 14.2.1.2 Miniaturized system for diagnostic imaging -- 14.2.1.3 Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system -- 14.3 Smartphone-enabled miniaturized biosensing systems -- 14.3.1 Colorimetric sensors -- 14.3.2 Fluorescence sensors -- 14.3.3 Luminescence sensors -- 14.3.4 Electrochemical biosensors -- 14.4 Commercialized miniaturized biosensors -- 14.4.1 Pressure sensors/meters -- 14.4.2 Digital multimeters -- 14.4.3 Electronic balance -- 14.4.4 Thermometers -- 14.4.5 pH meters -- 14.4.6 Glucose meters -- 14.5 Conclusions and perspectives -- References -- 15 - Lab-on-a-chip analytical devices -- 15.1 Introduction. , 15.2 Materials used in LOC and fabrication methods.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...