GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2020-06-15
    Description: This paper examines the projected changes in rainfall in Southeast Asia (SEA) in the twenty-first century based on the multi-model simulations of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experi-ment–Southeast Asia (SEACLID/CORDEX–SEA). A total of 11 General Circulation Models (GCMs) have been downscaled using 7 Regional Climate Models (RCMs) to a resolution of 25 km × 25 km over the SEA domain (89.5° E–146.5° E, 14.8° S–27.0° N) for two different representative concentration pathways (RCP) scenarios, RCP4.5 and RCP8.5. The 1976–2005 period is considered as the historical period for evaluating the changes in seasonal precipitation of December–January–Febru-ary (DJF) and June–July–August (JJA) over future periods of the early (2011–2040), mid (2041–2070) and late twenty-first century (2071–2099). The ensemble mean shows a good reproduction of the SEA climatological mean spatial precipitation pattern with systematic wet biases, which originated largely from simulations using the RegCM4 model. Increases in mean rainfall (10–20%) are projected throughout the twenty-first century over Indochina and eastern Philippines during DJF while a drying tendency prevails over the Maritime Continent. For JJA, projections of both RCPs indicate reductions in mean rainfall (10–30%) over the Maritime Continent, particularly over the Indonesian region by mid and late twenty-first century. However, examination of individual member responses shows prominent inter-model variations, reflecting uncertainty in the projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-27
    Description: THIS ARTICLE PROVIDES detailed information on projected changes in annual precipitation extremes over Southeast Asia under global warming of 2°C based on the multi-model simulations of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment Southeast Asia (SEACLID/CORDEX-SEA). Four indices of extreme precipitation are considered: annual total precipitation (PRCPTOT), consecutive dry days (CDD), frequency of rainfall exceeding 50 mm/day (R50mm), and intensity of extreme precipitation (RX1day). The ensemble mean of 10 simulations showed reasonable performance in simulating observed characteristics of extreme precipitation during the historical period of 1986–2005. The year 2041 was taken as the year when global mean temperature reaches 2°C above pre-industrial levels under unmitigated climate change scenario based on Karmalkar and Bradley (2017). Results indicate that the most prominent changes during the period of 2031–2051 were largely significant. Robust increases in CDD imply impending drier conditions over Indonesia, while increases in RX1day suggest more intense rainfall events over most of Indochina under 2°C global warming scenario. Furthermore, northern Myanmar is projected to experience increases in CDD, R50mm and RX1day, suggesting that the area may face more serious repercussions than other areas in Southeast Asia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...