GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP – similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bacteria living within eukaryotic cells can be essential for the survival or reproduction of the host but in other cases are among the most successful pathogens. Environmental Chlamydiae, including strain UWE25, thrive as obligate intracellular symbionts within protozoa; are recently discovered ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Glycerol ; Glycerol-3-phosphate ; Horderum (photosynthesis) ; Photosynthetic carbon metabolism (phosphate status) ; Spinacia (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Glycerol induced a limitation on photosynthetic carbon assimilation by phosphate when supplied to leaves of barley (Hordeum vulgare L.) and spinach (Spinacia oleracea L.). This limitation by phosphate was evidenced by (i) reversibility of the inhibition of photosynthesis by glycerol by feeding orthophosphate (ii) a decrease in light-saturated rates of photosynthesis and saturation at a lower irradiance, (iii) the promotion of oscillations in photosynthetic CO2 assimilation and in chlorophyll fluorescence, (iv) decreases in the pools of hexose monophosphates and triose phosphates and increases in the ratio of glycerate-3-phosphate to triose phosphate, (v) decreased photochemical quenching of chlorophyll fluorescence, and increased non-photochemical quenching, specifically of the component which relaxed rapidly, indicating that thylakoid energisation had increased. In barley there was a massive accumulation of glycerol-3-phosphate and an increase in the period of the oscillations, but in spinach the accumulation of glycerol-3-phosphate was comparatively slight. The mechanism(s) by which glycerol feeding affects photosynthetic carbon assimilation are discussed in the light of these results.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Amyloplasts ; Brassica ; Glucose 6-phosphate translocator ; Orthophosphate transport ; Starch synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolated amyloplasts from cauliflower (Brassica oleracea L. var botrytis) buds are able to export orthophosphate unidirectionally into the incubation medium. This orthophosphate transport appears to be protein-mediated, as indicated by the following observations: (i) low temperature and the presence of inhibitors of protein-mediated transport reduced the rate of orthophosphate export, and (ii) the rate of orthophosphate export became saturated with rising internal substrate concentrations. Micromolar concentrations of 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid inhibited the rate of unidirectional orthophosphate export, thus indicating the involvement of the amyloplastic glucose-6-phosphate (Glc6P)translocator in the unidirectional export of orthophosphate. The effect of rising concentrations of orthophosphate upon the activity of ADP glucose pyrophosphorylase in desalted extracts was determined. Orthophosphate given in concentrations similar to those measured in the amyloplastic stroma under conditions of steady-state rates of Glc6P-dependent starch synthesis inhibited the activity of ADP-glucose pyrophosphorylase significantly. However, even under strong limiting substrate conditions the residual activity was sufficient to catalyze the flux of carbon into starch. The maximal rates of orthophosphate transport (in the counter-exchange mode) by isolated spinach (Spinacia oleracea L.) chloroplasts and by isolated cauliflower-bud amyloplasts were also determined. These rates were compared with the maximal rates of undirectional orthophosphate export by these plastids. From these measurements we can conclude that, compared with spinach chloroplasts, isolated amyloplasts of cauliflower exhibit a fivefold greater ratio of unidirectional orthophosphate transport to maximal rate of orthophosphate transport in the counter-exchange mode compared to spinach chloroplasts. The determined rate of maximal unidirectional orthophosphate export is sufficient to catalyze the release of additional inorganic phosphate liberated in the amyloplastic stroma during the process of Glc6P-dependent starch synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Amyloplast (bud) ; Brassica ; Control coefficient ; Fatty-acid synthesis ; Starch synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Planta 181 (1990), S. 583-592 
    ISSN: 1432-2048
    Keywords: Fructose-1-6-bisphosphatase ; Photosynthate partitioning ; Spinacia (photosynthate partitioning) ; Sucrose phosphate synthase ; Sucrose synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments were carried out to estimate the elasticity coefficients and thence the distribution of control of sucrose synthesis and photosynthate partitioning between cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase (SPS), by applying the dualmodulation method of Kacser and Burns (1979, Biochem. Soc. Trans. 7, 1149–1161). Leaf discs of spinach (Spinacia oleracea L.) were harvested at the beginning and end of the photoperiod and illuminated at five different irradiances to alter (i) the extent of feedback inhibition and (ii) the rate of photosynthesis. The rate of CO2 fixation, sucrose synthesis and starch synthesis were measured and compared with the activation of SPS, and the levels of fructose-2,6-bisphosphate (Fru2,6bisP) and metabolites. Sucrose synthesis increased progressively with increasing irradiance, accompanied by relatively large changes of SPS activity and Fru2,6bisP, and relatively small changes of metabolites. At each irradiance, leaf discs harvested at the end of the photoperiod had (compared with leaf discs harvested at the beginning of the photoperiod) a decreased rate of sucrose synthesis, increased starch synthesis, decreased SPS activity, increased Fru2,6bisP, a relatively small (20%) increase of most metabolites, no change of the glycerate-3-phosphate: triose-phosphate ratio, a small increase of NADPmalate dehydrogenase activation, but no inhibition of photosynthesis. The changes of sucrose and starch synthesis were largest in low light, while the changes of SPS and Fru2,6bisP were as large, or even larger, in high light. It is discussed how these results provide evidence that the control of sucrose synthesis is shared between SPS and fructose-1,6-bisphosphatase, and provide information about the in-vivo response of these enzymes to changes in the levels of their substrates and effectors. At low fluxes, feedback regulation is very effective at altering partitioning. In high light, changes of SPS activation and Fru2,6bisP can be readily overriden by increasing levels of metabolites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Clarkia ; Fructose-2,6-bisphosphate ; Mutant (phosphoglucose isomerase) ; Phosphoglucose isomerase ; Photosynthate partitioning ; Sucrose synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract (i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Mutant (Pisum) ; Photosynthate partitioning ; Photosynthesis (metabolic control) ; Pisum (starchsynthesis) ; Starch-branching enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of a reduction of the activity of starch-branching enzyme (1,4-α-D-glucan, 1,4-α-D-glucan-6-glycosyl transferase; EC 2.4.1.18) on photosynthetic starch synthesis and photosynthate partitioning has been studied in leaves of pea (Pisum sativum L.). Leaves of wrinkled-seeded peas, recessive at the rugosus locus (rr), contained lower activity of branching enzyme than leaves of near-isogenic round-seeded peas, dominant at the rugosus locus (RR). Western blots showed that one isoform of the enzyme is absent from rr leaves, corresponding to the isoform that is absent from rr embryos. RR and rr leaves had identical rates of starch synthesis and photosynthesis at low irradiances. At high irradiances the rate of starch synthesis was decreased by up to 40% in rr relative to RR leaves. There was no corresponding increase of sucrose synthesis in rr leaves; instead, the rate of photosynthesis was decreased. This inhibition of photosynthesis was more marked at low than at high temperatures and was accompanied by increased oscillatory behaviour, rr leaves contained higher levels of ADP glucose and glycerate 3-phosphate than RR leaves in low and high light. The contribution of these results to our understanding of the distribution of control in the pathways of starch and sucrose synthesis is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Amyloplast ; Brassica ; Bud ; Phosphate translocator ; Starch degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolated amyloplasts from cauliflower buds are capable of mobilizing starch. This mobilization is strongly dependent upon the intactness of the plastids and is linear with time for up to 30 min. The degradation of starch occurs via a hydrolytic breakdown and is stimulated by ATP-dependent phosphorylation of products of this hydrolysis. The rate of phosphorolytic stimulation of starch degradation is negligible. Carbohydrates derived from starch degradation do not appear to enter the oxidative pentose-phosphate pathway. Phosphorylation of hydrolytically solubilized intermediates leads to the synthesis of dihydroxyacetone phosphate and hexose phosphates. 3-Phosphoglyceric acid acts as an inhibitor of starch mobilization. The export of labelled phosphorylated intermediates from amyloplasts containing 14C-labelled starch implies the presence of an amyloplastic phosphate translocator in these plastids. The physiological role of varying concentrations of 3-phosphoglyceric acid is discussed with respect to the regulation of a metabolic cycle of simultaneous starch synthesis and degradation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2048
    Keywords: Capsicum ; Chloroplast (from fruit) ; Glucose-6-phosphate ; Starch synthesis ; Hexose-phosphate translocator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have developed a method for the purification of chloroplasts from green-pepper fruits. These chloroplasts are characterized by a high degree of intactness and low contamination with other cellular components. The purified chloroplasts perform CO2 fixation and posses a fructose-1,6-bisphosphate phosphatase, necessary for the conversion of CO2 to starch. Besides carbon dioxide, these chloroplasts take up external carbon skeletons as precursors for starch synthesis. From various potential precursors tested, glucose-6-phosphate (Glc6P) is used with the highest efficiency for starch synthesis. The Glc6P-dependent starch synthesis is strongly enhanced in the presence of light, ATP, and phosphoglyceric acid. Adenosine 5′-monophosphate acts as an inhibitor of ATP-stimulated Glc6P-dependent starch synthesis. The ability to use Glc6P as a precursor for starch synthesis indicates the presence of a functional hexose-phosphate translocator in isolated chloroplasts from green-pepper fruits. The results are discussed with respect to the physiological function of chloroplasts in fruit tissues. We predict that chloroplasts from green-pepper fruits possess a chloroplastic hexose-phosphate translocator which enables these plastids to maintain starch synthesis from cytosolic precursors during both day and night.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...