GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] At the northern Cascadia margin, the Juan de Fuca plate is underthrusting North America at about 45 mm yr-1 (ref. 1), resulting in the potential for destructive great earthquakes. The downdip extent of coupling between the two plates is difficult to ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B12104, doi:10.1029/2005JB003630.
    Description: We use multichannel seismic reflection data to image the upper crustal structure of 0-620 ka crust along the southern Juan de Fuca Ridge (JdFR). The study area comprises two segments spreading at intermediate rate with an axial high morphology with narrow (Cleft) and wide (Vance) axial summit grabens (ASG). Along most of the axis of both segments we image the top of an axial magma chamber (AMC). The AMC along Cleft deepens from south to north, from 2.0 km beneath the RIDGE Cleft Observatory and hydrothermal vents near the southern end of the segment, to 2.3 km at the northern end near the site of the 1980’s eruptive event. Along the Vance segment, the AMC also deepens from south to north, from 2.4 km to 2.7 km. Seismic layer 2A, interpreted as the basaltic extrusive layer, is 250-300 m thick at the ridge axis along the Cleft segment, and 300-350 m thick along the axis of the Vance segment. However off-axis layer 2A is similar in both segments (500-600 m), indicating ~90% and ~60% off-axis thickening at the Cleft and Vance segments, respectively. Half of the thickening occurs sharply at the walls of the ASG, with the remaining thickening occurring within 3-4 km of the ASG. Along the full length of both segments, layer 2A is thinner within the ASG, compared to the ridge flanks. Previous studies argued that the ASG is a cyclic feature formed by alternating periods of magmatism and tectonic extension. Our observations agree with the evolving nature of the ASG. However, we suggest that its evolution is related to large changes in axial morphology produced by small fluctuations in magma supply. Thus the ASG, rather than being formed by excess volcanism, is a rifted flexural axial high. The changes in axial morphology affect the distribution of lava flows along the ridge flanks, as indicated by the pattern of layer 2A thickness. The fluctuations in magma supply may occur at all spreading rates, but its effects on crustal structure and axial morphology are most pronounced along intermediate spreading rate ridges.
    Description: This study was supported by the National Science Foundation grants OCE-0002551 to Woods Hole Oceanographic Institution, OCE-0002488 to Lamont-Doherty Earth Observatory, and OCE-0002600 to Scripps Institution of Oceanography.
    Keywords: Mid-ocean ridge ; Juan de Fuca ; Crustal structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 89-93, doi:10.1038/nature08095.
    Description: The oceanic crust extends over two thirds of the Earth’s solid surface and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and mid crust are constructed by dyking and seafloor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust. However, seismic images of molten sills within the lower crust have been elusive. To date only seismic reflections from mid-crustal melt lenses and sills within the MTZ have been described, suggesting that melt is efficiently transported through the lower crust. Here we report deep crustal seismic reflections off the southern Juan de Fuca Ridge that we interpret as originating from a molten sill presently accreting the lower oceanic crust. The sill sits 5-6 km beneath the seafloor and 850-900 m above the MTZ, and it is located 1.4-3.2 km off thespreading axis. Our results provide evidence for the existence of low permeability barriers to melt migration within the lower section of modern oceanic crust forming at intermediate-to-fast spreading rates, as inferred from ophiolite studies.
    Description: This research was supported by grants form the US NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q05008, doi:10.1029/2010GC003439.
    Description: Variations in topography and seismic structure are observed along the Juan de Fuca (JdF) Ridge axis and in the vicinity of pseudofaults on the ridge flanks left by former episodes of ridge propagation. Here we analyze gravity data coregistered with multichannel seismic data from the JdF Ridge and flanks in order to better understand the origin of crustal structure variations in this area. The data were collected along the ridge axis and along three ridge-perpendicular transects at the Endeavor, Northern Symmetric, and Cleft segments. Negative Mantle Bouguer anomalies of −21 to −28 mGal are observed at the axis of the three segments. Thicker crust at the Endeavor and Cleft segments is inferred from seismic data and can account for the small differences in axial gravity anomalies (3–7 mGal). Additional low densities/elevated temperatures within and/or below the axial crust are required to explain the remaining axial MBA low at all segments. Gravity models indicate that the region of low densities is wider beneath the Cleft segment. Gravity models for pseudofaults crossed along the three transects support the presence of thinner and denser crust within the pseudofault zones that we attribute to iron-enriched crust. On the young crust side of the pseudofaults, a 10–20 km wide zone of thicker crust is found. Reflection events interpreted as subcrustal sills underlie the zones of thicker crust and are the presumed source for the iron enrichment.
    Description: This work was supported by the National Science Foundation grants OCE‐0648303 to Lamont‐Doherty Earth Observatory, OCE‐0648923 to Woods Hole Oceanographic Institution.
    Keywords: Mid-ocean ridges ; Propagation ; Juan de Fuca Ridge ; Gravity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 100–112, doi:10.5670/oceanog.2012.08.
    Description: As part of the suite of multidisciplinary investigations undertaken by the Ridge 2000 Program, new multichannel seismic studies of crustal structure were conducted at the East Pacific Rise (EPR) 8°20'–10°10'N and Endeavour Segment of the Juan de Fuca Ridge. These studies provide important insights into magmatic systems and hydrothermal flow in these regions, with broader implications for fast- and intermediate-spreading mid-ocean ridges. A mid-crust magma body is imaged beneath Endeavour Segment underlying all known vent fields, suggesting that prior notions of a tectonically driven hydrothermal system at this site can be ruled out. There is evidence at both sites that the axial magma body is segmented on a similar 5–20 km length scale, with implications for the geometry of high-temperature axial hydrothermal flow and for lava geochemistry. The new data provide the first seismic reflection images of magma sills in the crust away from the axial melt lens. These off-axis magma reservoirs are the likely source of more-evolved lavas typically sampled on the ridge flanks and may be associated with off-axis hydrothermal venting, which has recently been discovered within the EPR site. Clusters of seismic reflection events at the base of the crust are observed, and localized regions of thick Moho Transition Zone, with frozen or partially molten gabbro lenses embedded within mantle rocks, are inferred. Studies of the upper crust on the flanks of Endeavour Segment provide new insights into the low-temperature hydrothermal flow that continues long after crustal formation. Precipitation of alteration minerals due to fluid flow leads to changes in P-wave velocities within seismic Layer 2A (the uppermost layer of the oceanic crust) that vary markedly with extent of sediment blanketing the crust. In addition, intermediate-scale variations in the structure of Layers 2A and 2B with local topography are observed that may result from topographically driven fluid upflow and downflow on the ridge flanks.
    Description: This research was supported by NSF OCE grants 0002488, 0002551, 0648303, 0648923, 0327872 and 0327885.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Geological Society of America for personal use, not for redistribution. The definitive version was published in Geology 42 (2014): 655-658, doi:10.1130/G35629.1.
    Description: Most of the magma erupted at mid-ocean ridges is stored in a mid-crustal melt lens that lies at the boundary between sheeted dikes and gabbros. Nevertheless, images of the magma pathways linking this melt lens to the overlying eruption site have remained elusive. Here, we have used seismic methods to image the thickest magma reservoir observed beneath any spreading center to date, which is principally attributed to the juxtaposition of the Juan de Fuca Ridge with the Cobb hotspot. Our results reveal a complex melt body beneath the summit caldera, which is ~14 km long, 3 km wide and up to 1 km thick. The estimated volume of the reservoir is 18–30 km3, more than two orders of magnitude greater than the erupted magma volumes of the 1998 and 2011 eruptions. Our images show a network of sub-horizontal to shallow dipping (〈30°) features that we interpret as pathways facilitating melt transport from the magma reservoir to the eruption sites.
    Description: This research was funded through a National Science Foundation grant, OCE- 0002600, and additionally supported through the Cecil H. and Ida M. Green Foundation at the Scripps Institution of Oceanography.
    Description: 2015-06-09
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09006, doi:10.1029/2008GC002085.
    Description: Recent P wave velocity compilations of the oceanic crust indicate that the velocity of the uppermost layer 2A doubles or reaches ∼4.3 km/s found in mature crust in 〈10 Ma after crustal formation. This velocity change is commonly attributed to precipitation of low-temperature alteration minerals within the extrusive rocks associated with ridge-flank hydrothermal circulation. Sediment blanketing, acting as a thermal insulator, has been proposed to further accelerate layer 2A evolution by enhancing mineral precipitation. We carried out 1-D traveltime modeling on common midpoint supergathers from our 2002 Juan de Fuca ridge multichannel seismic data to determine upper crustal structure at ∼3 km intervals along 300 km long transects crossing the Endeavor, Northern Symmetric, and Cleft ridge segments. Our results show a regional correlation between upper crustal velocity and crustal age. The measured velocity increase with crustal age is not uniform across the investigated ridge flanks. For the ridge flanks blanketed with a sealing sedimentary cover, the velocity increase is double that observed on the sparsely and discontinuously sedimented flanks (∼60% increase versus ∼28%) over the same crustal age range of 5–9 Ma. Extrapolation of velocity-age gradients indicates that layer 2A velocity reaches 4.3 km/s by ∼8 Ma on the sediment blanketed flanks compared to ∼16 Ma on the flanks with thin and discontinuous sediment cover. The computed thickness gradients show that layer 2A does not thin and disappear in the Juan de Fuca region with increasing crustal age or sediment blanketing but persists as a relatively low seismic velocity layer capping the deeper oceanic crust. However, layer 2A on the fully sedimented ridge-flank sections is on average thinner than on the sparsely and discontinuously sedimented flanks (330 ± 80 versus 430 ± 80 m). The change in thickness occurs over a 10–20 km distance coincident with the onset of sediment burial. Our results also suggest that propagator wakes can have atypical layer 2A thickness and velocity. Impact of propagator wakes is evident in the chemical signature of the fluids sampled by ODP drill holes along the east Endeavor transect, providing further indication that these crustal discontinuities may be sites of localized fluid flow and alteration.
    Description: This research was supported by National Science Foundation grants OCE-00-02488, OCE-00-02551, and OCE-00- 02600.
    Keywords: Upper crustal evolution ; Multichannel seismics ; Traveltime modeling ; Reflection imaging ; Juan de Fuca ridge flanks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 284 (2009): 94-102, doi:10.1016/j.epsl.2009.04.013.
    Description: Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110±10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13±2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault- controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of his plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.
    Description: Supported by the Doherty Foundation and the National Science 449 Foundation under grants OCE002488 and OCE0648303 to SMC and MRN
    Keywords: Juan de Fuca plate system ; Seismic reflection imaging ; Faulting ; Hydration ; Earthquakes
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...