GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 71 (1998), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recently, two of the 10 vertebrate protein kinase C (PKC) isoforms, PKCβII and PKCε, have been shown to bind specifically to actin filaments, suggesting that these kinases may regulate cytoskeletal dynamics. Here, we present evidence that two PKCs from the marine mollusk Aplysia californica, PKC Apl I, a Ca2+-activated PKC, and PKC Apl II, a Ca2+-independent PKC most similar to PKCε and η, also bind F-actin. First, they both cosedimented with purified actin filaments in a phorbol ester-dependent manner. Second, they both translocated to the Triton-insoluble fraction of the nervous system after phorbol ester treatment. PKC Apl II could also partially translocate to actin filaments and associate with the Triton-insoluble fraction in the absence of phorbol esters. Translocation to purified actin filaments was increased in the presence of a PKC inhibitor, suggesting that PKC phosphorylation reduces PKC bound to actin. Although both kinases bound F-actin, actin was not sufficient to activate the kinases. In support of a physiological role for actin-PKC interactions, immunochemical localization of PKC Apl II in neuronal growth cones revealed a striking colocalization with F-actin. Our results are consistent with a role for actin-PKC interactions in regulating cytoskeletal dynamics in Aplysia.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 89 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have identified an alternatively spliced form of synaptotagmin I in Aplysia neurons. This isoform, synaptotagmin I C2B-β, is generated by alternative exon usage in the C2B domain leading to nine amino acid changes in the C2B sequence from the previously characterized synaptotagmin I, now designated as synaptotagmin I C2B-α. Quantitative reverse transcriptase-polymerase chain reaction demonstrated that approximately 25% of mRNA encoding synaptotagmin I contained the C2B-β exon in the nervous system. Synaptotagmin I C2B-β showed greater resistance to digestion by chymotrypsin in the absence of calcium than did synaptotagmin I C2B-α, although both isoforms required the same amount of calcium to resist chymotrypsin digestion. The source of these changes in C2B properties was mapped to a single amino acid (threonine 358). We have also cloned SNAP 25 in Aplysia and show that it binds synaptotagmin I C2B-β with a higher affinity than synaptotagmin I C2B-α. These results suggest that this splicing alters biochemical properties of the C2B domain, affecting a number of its important known interactions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...