GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arndt, Jan Erik; Jokat, Wilfried; Dorschel, Boris; Myklebust, Reidun; Dowdeswell, Julian A; Evans, Jeffrey (2015): A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes. Geochemistry, Geophysics, Geosystems, 16(10), 3733-3753, https://doi.org/10.1002/2015GC005931
    Publication Date: 2023-01-20
    Description: A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N - 81°N) is presented. The DBM has a grid cell size of 250 m × 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 single-beam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south-orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago.
    Keywords: File content; NEG_DBM; Northeast Greenland; Projection; Resolution; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (∼10,000 yr) input of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 154, pp. 182-198, ISSN: 0277-3791
    Publication Date: 2016-11-19
    Description: New swath-bathymetric data acquired in 2010 and 2015 indicate a variety of glacial landforms in cross-shelf troughs of the Melville Bay (northeast Baffin Bay). These landforms reveal that, at their maximum extent, ice streams in the troughs crossed the shelf all the way to the shelf edge. Moraines, grounding-zone wedges (GZWs) and subglacial till lobes on the continental shelf define a pattern of variable ice stream retreat in the individual troughs. On the outer shelf, in the northern cross-shelf trough, ice-stream retreat was slow compared to more episodic retreat in the central (at least one stabilization on the outer shelf) and southern cross-shelf trough (re-advances at the shelf edge and fast retreat thereafter). Large GZWs on the mid-to inner shelf of the troughs indicate periods of grounding-zone stabilization. According to glacial landforms, the final retreat across the inner shelf (before 8.41 ka BP) was episodic to slow. Furthermore, evidence has been found for localized ice domes with minor ice-streams on inter-trough banks. The glacial landforms in Melville Bay, thus, indicate the varying and discontinuous ice sheet retreat history across the Northwest Greenland continental shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-15
    Description: The maximum glacial extent of the Greenland Ice Sheet (GIS) and its advance and retreat across the continental shelf are crucial to better understand past ice-sheet dynamics and to predict its future development in times of climate change. Analyses of distribution and shape of glacial landforms are, thus, used to interpret information on ice-stream advances and retreats across the shelf. This study focuses on the past dynamics of the northwest GIS across the Greenland continental shelf. The research area is located in the Melville Bay, northeast Baffin Bay. Our interpretations base on analyses of high-resolution swath-bathymetric data acquired in 2010 and 2015 with the research vessels RV Polarstern and RV Maria S. Merian. The bathymetric data provide information along and across the axes of the major cross-shelf troughs of Melville Bay, allowing us to reconstruct the ice-sheet dynamics between the shelf edge and the present-day coast. The results of the analyses show glacial landforms that document former dynamics of the Greenland Ice Sheet (GIS). Moraines at the shelf edge give evidence for the maximum GIS extent. Grounding-zone wedges (GZWs), till lobes and glacial lineations define a pattern of variable ice-stream retreat in the individual cross-shelf troughs. Slow ice-stream retreat occurred in the northern cross-shelf trough compared to more episodic retreats in the central and southern cross-shelf troughs of Melville Bay. Periods of ice sheet grounding-zone stabilizations are indicated by large GZW-complexes on the mid- to inner shelf. Finally, the northwest GIS retreated across the inner continental shelf before 8.41 ka BP as revealed by an age-dated geological sample. Furthermore, on inter-trough banks, evidence has been found for minor ice-stream activity on localized ice domes. The glacial landforms across the northwest Greenland continental shelf, thus, host records of varying and discontinuous ice-sheet retreats since the last glacial maximum.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Voluminous igneous complexes are commonly present in sedimentary basins on volcanic rifted margins, and they represent a challenge for petroleum explorationists. A 2500 km2 industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image subbasalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intrabasalt structures. Detailed seismic geomorphological interpretation of the top-basalt horizon, locally calibrated with high-resolution P-Cable wide-azimuth data, reveals new insight into the late-stage development of the volcanic flow fields and the kilometer-high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with a comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by preexisting structural highs, and these highs are locally bypassed by the lava. Volcanogenic debris flows are well-imaged on the escarpment horizon, along with large-scale large slump blocks. Similar features exist in active volcanic environments, e.g., on the south coast of Hawaii. Numerous postvolcanic extensional faults and incised channels cut into the marginal high and the escarpment, and we found that the area was geologically active after the volcanism ceased. In summary, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins. Our study demonstrates great promise for further understanding the igneous development of offshore basins as more high-quality 3D seismic data become available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-30
    Description: Understanding the structure of the ocean-continent transition (OCT) in passive margins is greatly enhanced by comparison with onshore analogues. The North Atlantic margins and the "fossil" system in the Scandinavian Caledonides show variations along strike between magma-rich and magma-poor margins, but are different in terms of exposure and degree of maturity. They both display the early stages of the Wilson cycle. Seismic reflection data from the mid-Norwegian margin combined with results from Ocean Drilling Program Leg 104 drill core 642E allow for improved subbasalt imaging of the OCT. Below the SeawardDipping Reflector (SDR) sequences, vertical and inclined reflections are interpreted as dike feeder systems. High-amplitude reflections with abrupt termination and saucer-shaped geometries are interpreted as sill intrusions, implying the presence of sediments in the transition zone beneath the volcanic sequences. The transitional crust located below the SDR of the mid-Norwegian margin has a well-exposed analogue in the Seve Nappe Complex (SNC). At Sarek (Sweden), hornfelsed sediments are truncated by mafic dike swarms with densities of 70%-80% or more. The magmatic domain extends for at least 800 km along the Caledonides, and probably reached the size of a large igneous province. It developed at ca. 600 Ma on the margin of the lapetus Ocean, and was probably linked to the magma-poor hyperextended segment in the southern Scandinavian Caledonides. These parts of the SNC represent an onshore analogue to the deeper level of the mid-Norwegian margin, permitting direct observation and sampling and providing an improved understanding, particularly of the deeper levels, of present-day magma-rich margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The Møre and Vøring basins of the mid-Norwegian volcanic passive margin are characterized by thick accumulations of Cretaceous to Paleocene sedimentary strata. They were formed during a series of Late Mesozoic-Early Cenozoic extensional events and represent vast underexplored areas with a limited number of wells. Recently, a new generation of long-offset 2D seismic reflection lines and 3D seismic data, together with new well data, has permitted a significant improvement in the regional understanding of the Møre and Vøring basins. This has enabled much better imaging of the deep Cretaceous subbasins and sub-basalt structures. In light of this significant data improvement, we performed a regional tectonostratigraphic synthesis of the pre-breakup development of the Møre and Vøring basins. We have interpreted eight regional Cretaceous and Paleocene horizons and constructed a series of structural and thickness maps. The new interpretations allow us to examine the sequential evolution of the Cretaceous to Paleocene sedimentary infill and to discuss its relationship to the deep crustal structures and regional tectonic events. We conclude that the long and polyphased development of the Møre and Vøring basins is partly controlled by deep-seated structural highs. We show that active deposition in the Early Cretaceous was mainly focused in the Møre Basin, while the main Cenomanian and subsequent Late Cretaceous-Paleocene depocentres developed principally in the Vøring Basin and migrated sequentially west towards the present continent-ocean boundary. We argue that the outer Møre and Vøring basins are likely underlain by a relatively thick continental crust compared to the inner part of the regional sag basin. In this setting our observations do not support evidence for a large zone of exhumed upper mantle, which has previously been proposed to have formed before magmatism and breakup.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • Ancient and modern hydrothermal venting systems occur offshore mid-Norway and Java. • They can share morphologies, eruptive behavior and develop similarly. • Modern hydrothermal venting systems are relevant analogues for ancient systems. Abstract Ancient hydrothermal vent complexes have released large volumes of greenhouse gases in the past causing global warming, and similar modern vent structures are potential geohazards. In the NE Atlantic, thousands of hydrothermal vent complexes were formed during the Paleocene-Eocene Thermal Maximum. In Java, Indonesia, the erupting Lusi sediment-hosted geothermal system caused the displacement of 40,000 people. In order to determine how ancient and modern hydrothermal venting systems are related, we map a well-defined buried hydrothermal vent complex offshore mid-Norway using 3D seismic reflection data and then compare it to the active Lusi eruption (since 2006) and the neighboring inactive Porong Structure. These are characterized using 2D seismic reflection data, borehole data and field observations. The venting structures are subcircular in plan-view and a few kilometers in diameter. They are funnel-shaped in profiles, with inward-dipping beds surrounding the conduits. The hydrothermal vent complex offshore mid-Norway reveals five seismically-distinct vent fill facies units. Importantly, two of the facies units are separated by an angular unconformity, clearly indicating that the depositional events within the vent fill were distinct. Hydrothermal fluids are interpreted to have led to the fluidization of mud-rich sediments which were erupted and deposited in and around the vent complex. Interpretation of a seismically transparent body along the conduit of the Norwegian venting structure, and the abrupt widening of the conduit at the Porong Structure, are interpreted to be caused by changes in fluid-flow dynamics as the fluids rise and get released from the host-rock. The hydrothermal venting systems in Java and offshore mid-Norway are found to be morphologically similar and are interpreted to form as the result of the transport and eruption of fluidized sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...