GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Echolocation (Physiology)-Congresses. ; Electronic books.
    Description / Table of Contents: Proceedings of a NATO ASI held in Helsingor, Denmark, September 10-19, 1986.
    Type of Medium: Online Resource
    Pages: 1 online resource (822 pages)
    Edition: 1st ed.
    ISBN: 9781468474930
    Series Statement: NATO Science Series A: Series ; v.156
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 3 (1987), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Aerial and underwater audiograms for two young female northern fur seals (Callorhinus ursinus) and one young female California sea lion (Zalophus californianus) were obtained with the same procedure and apparatus. Callorhinus hears over a larger frequency range and is more sensitive to airborne sounds than Zalophus or any other pinniped thus far tested in the frequency range of 500 Hz to 32 kHz. Sensitivity of Callorhinus to waterborne pure tones, ranging from 2 to 28 kHz, is equal or superior to all other pinnipeds tested in this same frequency range. Like Zalophus, the upper frequency limit for underwater hearing (as defined by Masterton et al. 1969) in Callorhinus is about one-half octave lower than the three phocid species thus far tested. Callorhinus' upper frequency limit in air is about 36 kHz and under water it is about 40 kHz. Comparison of air and water audiograms shows Callorhinus is no exception to previous behavioral findings demonstrating that the „pinniped ear” is more suitable for hearing in water than in air. Similar to Zalophus and Phoca vitulina, Callorhinus shows an anomalous hearing loss at 4 kHz in air. The basis for this insensitivity to airborne sounds at 4kHz and not at lower or higher frequencies is presumably caused by specialized middle ear mechanisms matching impedance for waterborne sounds. Critical ratio curves for Callorhinus are similarly shaped to ones obtained for humans but are shifted upwards in frequency. Compared to all other marine mammals thus far evaluated, the critical ratios for Callorhinus are the smallest yet reported.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2010. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 128 (2010): 1426-1434, doi:10.1121/1.3372643.
    Description: Arrays of up to six broadband suction cup hydrophones were placed on the forehead of two bottlenose dolphins to determine the location where the beam axis emerges and to examine how signals in the acoustic near-field relate to signals in the far-field. Four different array geometries were used; a linear one with hydrophones arranged along the midline of the forehead, and two around the front of the melon at 1.4 and 4.2 cm above the rostrum insertion, and one across the melon in certain locations not measured by other configurations. The beam axis was found to be close to the midline of the melon, approximately 5.4 cm above the rostrum insert for both animals. The signal path coincided with the low-density, low-velocity core of the melon; however, the data suggest that the signals are focused mainly by the air sacs. Slight asymmetry in the signals were found with higher amplitudes on the right side of the forehead. Although the signal waveform measured on the melon appeared distorted, when they are mathematically summed in the far-field, taking into account the relative time of arrival of the signals, the resultant waveform matched that measured by the hydrophone located at 1 m.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Acoustic field ; Acoustic signal detection ; Bioacoustics ; Biocommunications ; Hydrophones ; Underwater sound ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...