GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Type of Medium: Electronic Resource
    Pages: 1 CD-ROM , CD-ROM "Log & core data", Booklet (XVII, 87 S.), User guide (1 Faltbl.), 1 Kt. , 12 cm
    Edition: [Elektronische Ressource]
    Series Statement: Proceedings of the Ocean Drilling Program 190.2000
    Language: English
    Note: CD-ROM-Beil. u.d.T.: ODP Leg 190, log & core data, Nankai Trough
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We conducted a 3-D seismic inversion study to investigate spatial variations of physical properties of the décollement zone (DZ) and protodécollement zone (PDZ) under the northern Barbados accretionary prism. Significant spatial variations of physical properties were observed in the PDZ seaward of the thrust front from the inversion data. The density generally increases southward with a few localized low-density patches. A lower density commonly corresponds to a thicker PDZ, suggesting that the paleomorphology may at least partially control the variations of the physical properties. Similar low-density patches were also found in the DZ. These features may be inherited from those of the PDZ and enhanced after subduction through localized arrested consolidation. Under the prism toe, the density of the DZ increases landward. This trend may mainly result from shear-induced consolidation of the DZ but may also be related to landward increasing tectonic loading. Significant north–south differences in density and, thus, porosity and strength of the PDZ, are observed and these differences may continue into the DZ. A stronger DZ is likely responsible for a larger prism taper observed in the southern area of the prism toe. The larger taper, thus more horizontal shortening, coupled with a thinner sediment sheet above the PDZ in the southern area, may cause a relative retreat of the thrust front and a pronounced change in strike of the sequence thrusts south of seismic Line 690. The north–south differences may ultimately have originated in the approach of a structurally higher segment of the Tiburon Rise. The Tiburon Rise affects regional morphology and, thus, it controls the sedimentation and physical properties of the PDZ. It may also control sediment accumulation above the PDZ. Therefore, the sedimentational change induced by the structural high of the Tiburon Rise, in turn, resulted in structural change of the prism in the southern area.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ∼1-2Ma. Estimates of extension (∼3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 4 (1980), S. 319-340 
    ISSN: 1573-0581
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Multichannel seismic reflection profiles across the Sunda Trench slope off central Sumatra reveal details of subduction zone structure. Normal faults formed on the outer ridge of the trench offset deep strate and the oceanic crust, but die out upsection under the trench sediments. At the base of the inner trench slope, shallow reflectors are tilted seaward, while deeper reflectors dip landward parallel to the underlying oceanic crustal reflector. Intermediate depth reflectors can be traced landward through a seaward-dipping monocline. We interpret this fold as the shallow expression of a landward-dipping thrust fault at depth. Landward of this flexure, relatively undeformed strata have been stripped off the oceanic plate, uplifted 700 meters, and accreted to the base of the slope. The oceanic crust is not involved in the deformation at the toe of the slope, and it can be observed dipping landward about 25 km under the toe of the accretionary prism. The middle portion of the trench slope is underlain by deformed accreted strata. Shallow reflectors define anticlinal structures, but coherent deep reflectors are lacking. Reflectors 45 to 55 km landward of the base of the slope dip 4°-5° landward beneath a steep slope, suggesting structural imbrication. A significant sediment apron is absent from the trench slope. Instead, slope basins are developed in 375–1500 m water depths, with an especially large one at about 1500 m water depth that is filled with more than 1.1 seconds of relatively undeformed sediments. The seaward flank of the basin has recently been uplifted, as indicated by shallow landward-dipping reflectors. Earlier periods of uplift also appear to have coincided with sedimentation in this basin, as indicated by numerous angular unconformities in the basin strata.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 133 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-07
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Number; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-09
    Keywords: 190-1173A; Age, comment; Age model; Comment; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg190; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: text/tab-separated-values, 113 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-09
    Keywords: 190-1174A; Age, comment; Age model; Comment; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg190; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: text/tab-separated-values, 5 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-09
    Keywords: 190-1174B; Age, comment; Age model; Comment; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg190; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: text/tab-separated-values, 105 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-09
    Keywords: 190-1175A; Age, comment; Age model; Comment; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg190; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...