GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Chromatographic analysis. ; Chemistry, Analytic -- Technique. ; Sustainable development. ; Electronic books.
    Description / Table of Contents: This book examines counter-current, ion size exclusion, supercritical fluids, high-performance thin layers, and gas and size exclusion chromatographic techniques used to separate and purify organic and inorganic analytes. Includes green prep methods and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (220 pages)
    Edition: 1st ed.
    ISBN: 9789400777354
    DDC: 543.8
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Chapter-1 -- Saving Solvents in Chromatographic Purifications: The Counter-Current Chromatography Technique -- 1.1 Introduction -- 1.2 CCC Theory -- 1.2.1 High Loadability -- 1.2.2 Scale up Capability -- 1.3 Instrumentation -- 1.3.1 Hydrostatic and Hydrodynamic Instruments -- 1.3.2 Liquid Systems -- 1.4 Counter Current Chromatography, a Green Process -- 1.4.1 Saving Solvents -- 1.4.2 Improving Process Parameters -- 1.4.3 Injecting Crude Samples -- 1.4.4 Greener Solvents -- 1.5 Counter Current Chromatography, a Tool for Green Chemistry Development -- 1.5.1 Natural Products -- 1.5.2 Solute Partition Coefficient Determination -- 1.6 Conclusion -- References -- Chapter-2 -- Ion Size Exclusion Chromatohtaphy on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Elecyrolites -- 2.1 Introduction -- 2.2 Nanoporous Hypercrosslinked Polystyrene Sorbents -- 2.3 Brief Description of Chromatographic Experiments -- 2.4 Dimensions of Hydrated Ions -- 2.5 Separation of Electrolytes on Nanoporous Hypercrosslinked Sorbents -- 2.6 Basic Features of Size Exclusion Chromatography -- 2.7 Conception of "Ideal Separation Process" -- 2.8 Selectivity of Electrolyte Separation Process -- 2.9 Influence of the Electrolyte Concentration on the Selectivity of Separat -- 2.10 "Acid Retardation", "Base Retardation" and "Salt Retardation" Phenomena -- 2.11 Other Convincing Proofs of Separating Electrolytes via Exclusion Mechanism -- 2.12 Do we Really Need Sorbent Functional Groups to Separate Electrolytes? -- 2.13 Productivity of the Ion Size Exclusion Process -- 2.14 Ion Size Exclusion-Green Technology -- 2.15 Conclusion -- References -- Chapter-3 -- Supercritical Fluid Chromatography: A Green Approach for Separation and Purification of Organic and Inorganic Analytes. , 3.1 Introduction to Green Chemistry and Supercritical Fluid Chromatography -- 3.2 Super Critical Fluids -- 3.2.1 Supercritical Fluid Extraction (SFE) -- 3.3 Supercritical Fluid Chromatography (SFC): An Overview -- 3.3.1 History of Development of Supercritical Fluid Chromatography -- 3.3.2 Instrumentation -- 3.3.2.1 Advantages and Disadvantages of Supercritical Fluid Chromatography -- 3.3.3 Properties of SFC compared to GC and HPLC -- 3.4 Industrial Applications of SCFs and SFCs -- 3.5 Conclusion -- References -- Chapter-4 -- High Performance Thin-Layer Chromatography -- 4.1 Introduction -- 4.2 High Performance Thin-Layer Chromatography -- 4.3 Sample Preparation in HPTLC -- 4.4 Green Separation Modalities in HPTLC -- 4.4.1 "Three R" Philosophy-Replacement of Toxic Solvents with Environmental Friendly Mobi -- 4.4.1.1 Reversed-Phase Chromatography -- 4.4.1.2 Hydrophilic Interaction Chromatography (HILIC) in HPTLC -- 4.4.1.3 Salting-Out Chromatography in HPTLC -- 4.5 Conclusion -- References -- Chapter-5 -- Green Techniques in Gas Chromatography -- 5.1 Introduction -- 5.2 Sample Preparation -- 5.2.1 Direct Methods Without Sample Preparation -- 5.2.2 Solventless Sample Preparation Techniques -- 5.2.2.1 Solid Phase Extraction -- 5.2.2.2 Vapor-Phase Extraction -- 5.2.2.3 Thermal Desorption (TD)/Thermal Extraction (TE) -- 5.2.2.4 Membrane Extraction -- 5.2.3 Sample Preparation Using Environmentally Friendly Solvents -- 5.2.3.1 Supercritical Fluid Extraction (SFE) -- 5.2.3.2 Subcritical Water Extraction (SWE) -- 5.2.3.3 Ionic Liquids (ILs) -- 5.2.3.4 Cloud-Point Extraction -- 5.2.4 Assisted Solvent Extraction -- 5.3 Column Considerations for Green Gas Chromatography -- 5.4 Carrier Gas Considerations for Green Gas Chromatography -- 5.5 Coupling GC with Other Analytical Tools -- 5.6 On-Site Analysis. , 5.7 Conclusion -- References -- Chapter-6 -- Preparation and Purification of Garlic-Derived Organosulfur Compound Allicin by Green Methodologies -- 6.1 Introduction -- 6.2 Green RP-HPLC Purification of the Allicin -- 6.3 Characterization of the Allicin by Green Methodologies -- 6.4 Allicin in Different Garlic Extract by Green RP-HPLC -- 6.5 Allicin Green Chemical Synthesis -- 6.6 Stability of Allicin -- 6.7 Conclusions -- References -- Chapter-7 -- Green Sample Preparation Focusing on Organic Analytes in Complex Matrices -- 7.1 Introduction -- 7.1.1 Trends in Green Analytical Chemistry -- 7.1.2 Green Techniques for Sample Preparation -- 7.1.2.1 Reduction and Solvent Replacement -- Supercritical Fluid Extraction -- Membranes -- 7.1.2.2 Solvent Elimination -- Solid Phase Extraction (SPE) -- Matrix Solid-Phase Dispersion (MSPD) -- Sorptive Extraction Techniques -- Solid Phase Microextraction (SPME) -- Stir-Bar Sorptive Extraction -- 7.2 Conclusions -- References -- Chapter-8 -- Studies Regarding the Optimization of the Solvent Consumption in the Determination of Organochlor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results -- 8.4 Discussions -- 8.4.1 TRM1 -- 8.4.2 TRM2 -- 8.5 Conclusions -- References -- Chapter-9 -- Size Exclusion Chromatography a Useful Technique For Speciation Analysis of Polydimethylsiloxanes -- 9.1 Introduction to SEC -- 9.2 SEC Retention Mechanisms -- 9.2.1 Ideal Size Exclusion Mechanism -- 9.2.2 Non-Ideal Size Exclusion Mechanism -- 9.3 The Stationary Phase in SEC -- 9.4 The Mobile Phase in SEC -- 9.5 Analytical Problems -- 9.6 Methods for Column Calibration -- 9.7 Applications of SEC Biomedical and Pharmaceutical -- 9.7.1 SEC as a Useful Technique for Linear Polydimethylsiloxanes Speciation Analysis. , 9.8 Methodology for Linear Polydimethylsiloxanes Speciation Analysis -- 9.8.1 Mobile Phase Selection -- 9.8.2 Stationary Phase Selection -- 9.8.3 Column Conditions -- 9.8.4 Column Calibration -- 9.8.5 Separation of Polydimethylsiloxanes -- 9.9 Conclusions -- References -- Erratum -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Solvents. ; Electronic books.
    Description / Table of Contents: These volumes are an essential primary resource that describe the properties of green solvents crucial to modern green chemistry. The books explore the hazards of regular solvents and the plethora of green solvent applications in analytical, organic and pharmaceutical chemistry.
    Type of Medium: Online Resource
    Pages: 1 online resource (439 pages)
    Edition: 1st ed.
    ISBN: 9789400717121
    Language: English
    Note: Intro -- Green Solvents I -- Preface -- Editors' bios -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Green Solvents Fundamental and Industrial Applications -- 1.1 Introduction -- 1.2 Solvent-Free Reactions -- 1.2.1 Organic Synthesis -- 1.2.1.1 Protection/Deprotection Reactions -- 1.2.1.2 Tishchenko Reaction -- 1.2.1.3 Condensation Reactions -- 1.2.1.4 Aldol Reaction -- 1.2.1.5 Sonogashira Reaction -- 1.2.1.6 Metathesis Reactions -- 1.2.1.7 Diels-Alder Reactions -- 1.2.1.8 Heck Reaction -- 1.2.1.9 Mannich Reaction -- 1.2.1.10 Hydrogenation -- 1.2.1.11 Esterification -- 1.2.1.12 Meyers' Lactamization -- 1.2.1.13 Synthesis of 1,3,5-Triarylbenzene -- 1.2.1.14 Hydroaminovinylation of Olefins -- 1.2.1.15 Synthesis of Diynes -- 1.2.1.16 Synthesis of Lactic Acid -- 1.2.1.17 Synthesis of Thioglycosides -- 1.2.1.18 Synthesis of Lipidyl-Cyclodextrins -- 1.2.1.19 Synthesis of Unsaturated Ketones -- 1.2.1.20 Synthesis of Nitrotoluene -- 1.2.1.21 Synthesis of Quinazoline-2,4(1 H ,3 H)-Diones -- 1.2.1.22 Synthesis of Monomethine Indocyanine Dyes -- 1.2.1.23 Synthesis of Acetyl Salicylic Acid -- 1.2.1.24 Oxidation -- 1.2.1.25 Reduction -- 1.2.1.26 Synthesis of Heterocyclic Compounds -- 1.2.2 Inorganic and Materials Synthesis -- 1.2.3 Polymerization -- 1.3 Water -- 1.3.1 Organic Synthesis -- 1.3.1.1 Suzuki-Miyaura Reactions -- 1.3.1.2 Michael Reactions -- 1.3.1.3 Knoevenagel Reactions -- 1.3.1.4 Aldol Reactions -- 1.3.1.5 Telomerisation Reactions -- 1.3.1.6 Amination Reactions -- 1.3.1.7 Alkylation -- 1.3.1.8 Cycloaddition Reactions -- 1.3.1.9 Hydroxylation -- 1.3.1.10 Alkynylation -- 1.3.1.11 Condensation Reactions -- 1.3.1.12 Diels-Alder Reactions -- 1.3.1.13 Mannich Reactions -- 1.3.1.14 Condensation Reactions -- 1.3.1.15 Sonogashira-Hagihara Reaction -- 1.3.1.16 Hydrolysis -- 1.3.1.17 Aza-Friedel-Crafts Reaction. , 1.3.1.18 Cyanation of Aryl Iodides -- 1.3.1.19 Suzuki Reaction -- 1.3.1.20 Cycloaddition Reactions -- 1.3.1.21 Aminohalogenation Reaction -- 1.3.1.22 Photooxygenation of Furans -- 1.3.1.23 Electrooxidation -- 1.3.1.24 Synthesis of 1,8-Dioxo-9,10-Diaryldecahydroacridines -- 1.3.1.25 Oxidation -- 1.3.1.26 Reduction -- 1.3.1.27 Synthesis of Heterocyclic Compounds -- 1.3.2 Synthesis of Metal Nanoparticles -- 1.4 Supercritical Fluids -- 1.4.1 Extraction -- 1.4.2 Organic Synthesis -- 1.4.3 Materials Synthesis and Modifications -- 1.4.4 Solubility in Supercritical Carbon Dioxide (SC-CO 2) -- 1.5 Room Temperature Ionic Liquids (RTIL)s -- 1.5.1 Organic Synthesis -- 1.5.1.1 Enzymatic Reactions -- 1.5.1.2 Transesterification -- 1.5.1.3 Hydroesterificaton -- 1.5.1.4 Diels-Alder Reactions -- 1.5.1.5 Michael Reaction -- 1.5.1.6 Friedel-Crafts Reactions -- 1.5.1.7 Condensation Reactions -- 1.5.1.8 Cyclocondensation Reactions -- 1.5.1.9 Mannich Reaction -- 1.5.1.10 Hydrolysis -- 1.5.1.11 Dehydration -- 1.5.1.12 Epoxidation -- 1.5.1.13 Synthesis of Imidazoles -- 1.5.1.14 Synthesis of Diacetals and Diketals -- 1.5.1.15 Bonds Cleavage Reactions -- 1.5.1.16 Oligomerization -- 1.5.1.17 Synthesis of 5-Hydroxymethylfurfural and Furfural -- 1.5.1.18 Preparation of Biodiesel Fuel -- 1.5.1.19 Synthesis of Tributyl Citrate -- 1.5.1.20 Synthesis of Dimethyl Carbonate -- 1.5.1.21 Nitration of Aromatic Compounds -- 1.5.1.22 Alkylation and Acylation -- 1.5.1.23 Synthesis of Fatty Acid Esters of Steroids -- 1.5.1.24 Aldol Reaction -- 1.5.1.25 Synthesis of 1,4-Dibromo-Naphthalene -- 1.5.1.26 Heck and the Knoevenagel Reactions -- 1.5.1.27 Synthesis of Aromatic Chloroamines -- 1.5.1.28 Esterification -- 1.5.1.29 Hydrosilylation of Alkenes -- 1.5.1.30 Coupling Reactions -- 1.5.1.31 Synthesis of Cellulose Propionate -- 1.5.1.32 Synthesis of Hydroxy Ester. , 1.5.1.33 Sonogashira Reactions -- 1.5.1.34 Metathesis Reaction -- 1.5.1.35 Aziridination Reaction -- 1.5.1.36 Synthesis of [60] Fullerene -- 1.5.1.37 Methanolysis -- 1.5.1.38 Dimerization -- 1.5.1.39 Synthesis of Drugs -- 1.5.1.40 Oxidation -- 1.5.1.41 Synthesis of Heterocyclic Compounds -- 1.5.2 Materials Synthesis and Modifications -- 1.5.2.1 Synthesis of Nanoparticles -- 1.5.2.2 Synthesis of Silicas -- 1.5.2.3 Synthesis of Zeolites -- 1.5.2.4 Bioreactors -- 1.5.2.5 Synthesis of Tin Oxide Microspheres -- 1.5.2.6 Synthesis of ZnO Mesocrystals -- 1.5.2.7 Functionalization of Multiwalled Carbon Nanotubes (MWNTs) -- 1.5.2.8 Desulfurization of Diesel -- 1.5.2.9 Removal of Sulfur Dioxide -- 1.5.2.10 Decomposition -- 1.5.2.11 Carbonization -- 1.5.2.12 Synthesis of Hydrogels and Composite Hydrogels -- 1.5.2.13 Absorption -- 1.5.2.14 Corrosion Protection -- 1.5.2.15 Electrodeposition -- 1.5.2.16 Depolymerization -- 1.5.2.17 Inhibitor -- 1.5.2.18 Synthesis of Inorganic Materials -- 1.5.3 Polymerization -- 1.5.4 Extraction -- 1.5.5 Solubility -- 1.6 Perfluorinated Solvents -- 1.6.1 Extraction -- 1.6.2 Organic Synthesis -- 1.7 Conclusions -- References -- Chapter 2: Green Fluids Extraction and Purification of Bioactive Compounds from Natural Materials -- 2.1 Introduction -- 2.2 Isolation and Purification of 3,5-Diprenyl-4-Hydroxycinnamic Acid (DHCA) in Brazilian Propolis -- 2.2.1 Classical Solvent Extractions -- 2.2.2 Purification and Identification of 3,5-Diprenyl-4-Hydroxycinnamic Acid (DHCA) -- 2.2.3 Quantification of 3,5-Diprenyl-4-Hydroxycinnamic Acid (DHCA) -- 2.3 Green Fluid Extraction of 3,5-Diprenyl-4-Hydroxycinnamic Acid (DHCA) from Brazilian Propolis -- 2.3.1 Sensitivity Test of Supercritical Carbon Dioxide (SC-CO 2) Extractions -- 2.3.2 Response Surface Methodology (RSM): Designed Supercritical Carbon Dioxide (SC-CO 2) Extractions. , 2.4 Precipitation of Submicron Particles in Brazilian Propolis via Supercritical Carbon Dioxide (SC-CO 2) Antisolvent -- 2.4.1 Supercritical Carbon Dioxide (SC-CO 2) Micronization Process -- 2.4.2 Analysis of Micronized Precipitates -- 2.4.2.1 Determination of Particles Size, Distribution, and Morphology -- 2.4.2.2 Quantification of DHCA and Flavonoids -- 2.4.3 Experimental Results of Supercritical Carbon Dioxide (SC-CO 2) Antisolvent Micronization -- 2.4.3.1 Preliminary Experiment of Supercritical Carbon Dioxide (SC-CO 2) Precipitation -- 2.4.3.2 Response Surface Methodology (RSM): Designed Supercritical Carbon Dioxide (SC-CO 2) Precipitation -- 2.5 Biological Activity of Propolis Samples Produced by Supercritical Fluid Procedure -- 2.5.1 Cytotoxic Assay of Human Cells -- 2.5.1.1 Supercritical Carbon Dioxide (SC-CO 2) Extracts -- 2.5.1.2 Supercritical Carbon Dioxide (SC-CO 2) Precipitates -- 2.5.2 Antioxidative Ability Tests -- 2.5.2.1 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radical -- 2.5.2.2 Low-Density Lipid Protein -- 2.6 Column Partition Fractionation of g -Oryzanols -- 2.6.1 Isolation and Identification of Two g -Oryzanols -- 2.6.2 Quantification of g -Oryzanols, Free Fatty Acids, and Triglycerides -- 2.6.3 Soxhlet Solvent Extractions -- 2.6.4 Purification of Rice Bran Oil Using Column Partition -- 2.7 Supercritical Carbon Dioxide (SC-CO 2) Extraction and Deacidification of Rice Bran Oil -- 2.7.1 Experimentally Designed Supercritical Carbon Dioxide (SC-CO 2) Extraction -- 2.7.2 Pilot-Scale Supercritical Carbon Dioxide (SC-CO 2) Extraction -- 2.7.3 Experimentally Designed Supercritical Carbon Dioxide (SC-CO 2) Deacidification -- 2.8 Conclusions -- References -- Chapter 3: Green Solvents for Biocatalysis -- 3.1 Introduction -- 3.2 Water -- 3.3 Supercritical fluids -- 3.4 Fluorous Solvents -- 3.4.1 Properties and Applications. , 3.4.2 Applications of Fluorous Biphasic Systems in Biocatalysis (FBS) -- 3.5 Ionic Liquids -- 3.5.1 Properties and Applications -- 3.5.2 Biocatalysis in Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Green Solvents for Pharmaceutical Industry -- 4.1 Pharmaceutical Green Chemistry -- 4.2 Organic Solvents in the Pharmaceutical Industry -- 4.3 Green Solvents Technology: A Potential Platform for the Pharmaceutical Industry -- 4.4 Acidic Ionic Liquids -- 4.5 Basic Ionic Liquids -- 4.6 Oxidation on Ionic Liquids -- 4.7 Chiral Ionic Liquids and Chiral Amino Acid Ionic Liquids -- 4.8 Supported Ionic Liquids -- 4.9 Microwave- and Ultrasound-Assisted Reactions Using Ionic Liquids -- 4.10 Recent Bioconversions on Ionic Liquids -- 4.11 Ionic Liquids for Analytical Spectroscopy -- References -- Chapter 5: Limonene as Green Solvent for Extraction of Natural Products -- 5.1 Introduction -- 5.2 Limonene: Origin, Applications, and Properties -- 5.3 Limonene as an Alternative Solvent for Soxhlet Extraction -- 5.4 Limonene as an Alternative Solvent for Dean-Stark Distillation -- 5.5 Limonene as an Alternative Solvent for Extraction of By-Products -- 5.6 Combining Green Extraction Technique and Green Solvent -- 5.7 Future Trends -- References -- Chapter 6: Glycerol as an Alternative Solvent for Organic Reactions -- 6.1 Introduction -- 6.2 Glycerol for Redox Reactions -- 6.3 Glycerol for Catalytic C-C Bond Formations -- 6.4 Glycerol for Biocatalysis -- 6.5 Glycerol for Micellar Catalytic Reactions -- 6.6 Other Catalytic Organic Reactions in Glycerol -- 6.7 Glycerol-Based Solvents -- References -- Chapter 7: Water as Reaction Medium in the Synthetic Processes Involving Epoxides -- 7.1 Introduction -- 7.2 Epoxides in the Synthesis of 1,2-Amino Alcohols in Water -- 7.3 Epoxides in the Synthesis 1,2-Diols, 1,2-Alkyloxy, and -Aryloxy Alcohols in Water. , 7.4 Epoxides in the Synthesis Hydroxy Sulfur Compounds.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Solvents. ; Electronic books.
    Description / Table of Contents: This book offers an overview of types of solvents and discusses their applications in extraction, organic synthesis, biocatalytic processes, production of fine chemicals, biochemical transformations, composite material, energy storage, polymers and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (517 pages)
    Edition: 1st ed.
    ISBN: 9789400728912
    DDC: 541.3482
    Language: English
    Note: Intro -- Green Solvents II -- Preface -- Editor's Biography -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Ionic Liquids as Green Solvents: Progress and Prospects -- 1.1 Introduction -- 1.2 History of Ionic Liquids (ILs) -- 1.3 Structure of Ionic Liquids (ILs) -- 1.3.1 Cations -- 1.3.2 Anions -- 1.4 Synthesis of Ionic Liquids (ILs) -- 1.4.1 Quaternization Reactions -- 1.4.2 Anion-Exchange Reactions -- 1.4.2.1 Lewis-Acid-Based Ionic Liquids (ILs) -- 1.4.2.2 Anion Metathesis -- 1.5 Properties of Ionic Liquids (ILs) -- 1.5.1 Melting Point -- 1.5.2 Volatility -- 1.5.3 Thermal Stability -- 1.5.4 Viscosity -- 1.5.5 Density -- 1.5.6 Polarity -- 1.5.7 Conductivity and Electrochemical Window -- 1.5.8 Toxicity -- 1.5.9 Air and Moisture Stability -- 1.5.10 Cost and Biodegradability -- 1.6 Solvent Properties and Solvent Effects -- 1.6.1 Solute-Ionic Liquids (ILs) Interactions -- 1.6.1.1 Interaction of Ionic Liquids (ILs) with Water -- 1.6.1.2 Interaction of Ionic Liquids (ILs) with Acid and Base -- 1.6.1.3 Interaction of Ionic Liquids (ILs) with Aromatic Hydrocarbon -- 1.6.1.4 Interaction with Chiral Substrates -- 1.7 Conclusions -- References -- Chapter 2: Ionic Liquids as Green Solvents for Alkylation and Acylation -- 2.1 Introduction -- 2.2 Alkylation -- 2.2.1 Ionic Liquids as Green Solvents -- 2.2.2 Ionic Liquids as Dual Green Solvents and Catalysts -- 2.2.3 Ionic Liquids Immobilized on Solid Supports -- 2.3 Acylation -- 2.3.1 Ionic Liquids as Green Solvents -- 2.3.2 Ionic Liquids in Dual Role as Green Solvents and Catalysts -- 2.3.3 Immobilized Ionic Liquids -- 2.4 Remarks -- References -- Chapter 3: Ionic Liquids as Green Solvents for Glycosylation Reactions -- 3.1 Introduction -- 3.2 Preparation of Acid-Ionic Liquids -- 3.3 Reusability of Acid-Ionic Liquids -- 3.4 Tunability and Basicity of Ionic Liquids. , 3.5 Nonvolatility of Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Ionic Liquid Crystals -- 4.1 Introduction -- 4.2 Ionic Liquid Crystals Based on Organic Cationsand Anions -- 4.2.1 Imidazolium-Based Ionic Liquid Crystals -- 4.2.2 Pyrrolidinium-Based Ionic Liquid Crystals -- 4.2.3 Pyridinium and Bipyridinium-Based IonicLiquid Crystals -- 4.2.4 Morpholinium-, Piperazinium-, and Piperidinium-BasedIonic Liquid Crystals -- 4.2.5 Ammonium-Based Ionic Liquid Crystals -- 4.2.6 Guanidinium-Based Ionic Liquid Crystals -- 4.2.7 Phosphonium-Based Ionic Liquid Crystals -- 4.2.8 Anions -- 4.3 Ionic Liquid Crystals Based on Metal Ions -- 4.4 Polymeric Ionic Liquid Crystals -- 4.4.1 Main-Chain Ionic Liquid-Crystalline Polymers -- 4.4.2 Side-Chain Ionic Liquid-Crystalline Polymers -- 4.4.3 Dendrimers -- 4.5 Applications of Ionic Liquid Crystals -- 4.6 Conclusions -- References -- Chapter 5: Application of Ionic Liquids in Extraction and Separation of Metals -- 5.1 Introduction -- 5.2 Processing Metal Oxides and Ores with Ionic Liquids -- 5.2.1 Metal Oxides Processing -- 5.2.2 Mineral Processing -- 5.3 Electrodeposition of Metals Using Ionic Liquids -- 5.3.1 Electrodeposition of Aluminum -- 5.3.2 Electrodeposition of Magnesium -- 5.3.3 Electrodeposition of Titanium -- 5.4 Ionic Liquids in Solvent Extraction of Metal Ions -- 5.5 Conclusions -- References -- Chapter 6: Potential for Hydrogen Sulfide Removal Using Ionic Liquid Solvents -- 6.1 Introduction -- 6.2 Ionic Liquids as Physical Solvents for H 2 S Removal -- 6.3 Hybrid Solvents Comprising Ionic Liquids and Amines -- 6.4 Conclusions and Outlook -- References -- Chapter 7: Biocatalytic Reactions in Ionic Liquid Media -- 7.1 Introduction -- 7.2 Biocatalyst Tested in Ionic Liquids -- 7.2.1 Lipases -- 7.2.2 Esterases and Proteases -- 7.2.3 Glycosidases -- 7.2.4 Oxidoreductases. , 7.3 Effect of the Ionic Liquid Composition on the Activity and Stability of Enzymes -- 7.4 Biotransformation in Ionic Liquids -- 7.4.1 Synthesis of Flavour Esters -- 7.4.2 Biotransformations of Polysaccharides and Nucleotides -- 7.4.3 Synthesis of Biodiesel -- 7.4.4 Synthesis of Polyesters -- 7.4.5 Resolution of Racemates -- 7.4.6 Synthesis of Carbohydrates -- 7.5 Conclusions -- References -- Chapter 8: Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis -- 8.1 Introduction -- 8.2 Supercritical Carbon Dioxide in Enzymatic Synthesis -- 8.3 Ionic Liquids as Reaction Media in Enzymatic Synthesis -- 8.4 Supercritical Carbon Dioxide/Ionic Liquid Biphasic System in Enzymatic Synthesis -- 8.5 Conclusions -- References -- Chapter 9: Ionic Liquids as Lubricants -- 9.1 Introduction -- 9.2 Overview of Ionic Liquids (ILs) -- 9.2.1 Definition and Types of Ionic Liquids (ILs) -- 9.2.2 Relationship Between Molecular Structure and Properties of Ionic Liquids (ILs) -- 9.3 Common Ionic Liquids (ILs) as Lubricants -- 9.3.1 Ionic Liquids (ILs) as Lubrication Oils -- 9.3.1.1 Ionic Liquids (ILs) as Lubrication Oils for Fe Alloy/Steel or Steel/Steel Contacts -- 9.3.1.2 Ionic Liquids (ILs) as Lubrication Oils of Light Alloys -- 9.3.1.3 Ionic Liquids (ILs) as Lubrication Oils for Specific Contacts -- 9.3.1.4 Ionic Liquids (ILs) as Lubrication Oils Under Vacuum -- 9.3.2 Ionic Liquids (ILs) as Lubrication Additives -- 9.3.2.1 Ionic Liquids (ILs) as Water Additives -- 9.3.2.2 Ionic Liquids (ILs) as Mineral Oil Additives -- 9.3.2.3 Ionic Liquids (ILs) as Synthetic Oil and Lubrication Grease Additives -- 9.3.2.4 Ionic Liquids (ILs) as Polymer Material Additives -- 9.3.3 Additives of Ionic Liquid (IL) Lubricants -- 9.3.4 Thin Films -- 9.4 Function of Ionic Liquids (ILs) as Lubricants. , 9.4.1 Function of Ionic Liquids (ILs) as Lubrication Oils -- 9.4.2 Function of Ionic Liquids (ILs) as Additives or Thin Films -- 9.5 Lubrication Mechanism -- 9.6 Conclusions and Outlook -- References -- Chapter 10: Stability and Activity of Enzymes in Ionic Liquids -- 10.1 Introduction -- 10.1.1 Ionic Liquid in Reference to Its Origin -- 10.1.2 Ionic Liquid as a Solvent -- 10.1.3 Enzymes in Ionic Liquids -- 10.2 Enzyme Stability in Ionic Liquids -- 10.2.1 Stability of Lipases -- 10.2.2 Stability of Monellin -- 10.2.3 Stability of Cytochrome c -- 10.2.4 Stability of α -Chymotrypsin -- 10.2.5 Stability of Penicillin G Acylase -- 10.3 Methods of Stabilizing Proteins/Enzymes in Ionic Liquids -- 10.3.1 Stabilization by Ionic Liquid Coating -- 10.3.2 Stabilization by Anchoring with Carbon Nanotubes -- 10.3.3 Stabilization by Capping with Nanoparticles -- 10.3.4 Stabilization by Entrapment in Hydrogels -- 10.3.5 Stabilization by Enzyme Modification -- 10.3.6 Stabilization by Emulsification of Ionic Liquids -- 10.4 Catalytic Activity of Enzymes in Ionic Liquids -- 10.4.1 Biotransformations by Lipases and Esterases -- 10.4.1.1 Esterification and Transesterification Reaction -- 10.4.1.2 Enantioselective Hydrolysis Reaction -- 10.4.1.3 Enantioselective Acylation Reaction -- 10.4.1.4 Kinetic Resolution of Alcohols -- 10.4.2 Reactions Catalyzed by Proteases -- 10.4.3 Carbohydrate Synthesis by Glycosidases -- 10.4.4 Hydrocyanation Reaction by Lyases -- 10.4.5 Biocatalytic Redox Reactions by Oxidoreductases -- 10.4.6 Enzymatic Polymerization Reaction in Ionic Liquids -- 10.5 Stability/Activity Vis-à-vis Solvent Property of Ionic Liquids: A Structure-Activity Relationship (SAR) Analysis -- 10.6 Conclusions -- References -- Chapter 11: Supported Ionic Liquid Membranes: Preparation, Stability and Applications -- 11.1 Introduction. , 11.2 Methods of Preparation and Characterization of Supported Ionic Liquid Membranes -- 11.3 Stability of Supported Ionic Liquid Membranes -- 11.4 Mechanism of Transport Through Supported Ionic Liquid Membranes -- 11.5 Fields of Application of Supported Liquid Membranes -- 11.6 Conclusions -- References -- Chapter 12: Application of Ionic Liquids in Multicomponent Reactions -- 12.1 Introduction -- 12.1.1 Ionic Liquids Based on 1-Butyl-3-methylimidazolium -- 12.1.1.1 1-Butyl-3-methylimidazolium -- 12.1.1.2 1-Butyl-3-methylimidazolium Hexafluorophosphate -- 12.1.1.3 1-n-Butyl-3-methylimidazolium Bromide -- 12.1.1.4 Butyl Methyl Imidazolium Hydroxide -- 12.1.1.5 Other 1-Butyl-3-methylimidazolium-Based Ionic Liquids -- 12.1.2 Other Imidazole-Based Ionic Liquids -- 12.1.2.1 Ionic Liquid-Supported Iodoarenes -- 12.1.2.2 1,3- n -Dibutylimidazolium Bromide -- 12.1.2.3 1- n -Butylimidazolium Tetrafluoroborate -- 12.1.2.4 1-Ethyl-3-methylimidazole Acetate -- 12.1.2.5 An Acidic Ionic Liquid -- 12.1.2.6 Task-Specific Ionic Liquids -- 12.1.2.7 1-Methyl-3-heptyl-imidazolium Tetrafluoroborate -- 12.1.2.8 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Hexafluorophosphate-Bound Acetoacetate -- 12.1.2.9 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Tetrafluoroborate- or Hexafluorophosphate-Bound b -oxo Esters -- 12.1.2.10 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate or Hexafluorophosphate and N -(2-Hydroxyethyl)pyridinium Tetrafluoroborate or Hexafluorophosphate -- 12.1.2.11 PEG-1000-Based Dicationic Acidic Ionic Liquid -- 12.1.2.12 1-Ethyl-3-methylimidazolium ( S)-2-Pyrrolidinecarboxylic Acid Salt -- 12.1.2.13 1-Methyl-3-pentylimidazolium Bromide -- 12.1.2.14 3-Methyl-1-sulfonic Acid Imidazolium Chloride -- 12.1.3 Other Ionic Liquids -- 12.2 Conclusions -- References. , Chapter 13: Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 1st ed.
    ISBN: 9783319527390
    DDC: 541.372
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- 1 Organic-Inorganic Membranes Impregnated with Ionic Liquid -- Abstract -- 1 Introduction -- 2 Ionic Liquids: General Properties and Applications -- 3 Ionic Liquids as Electrolytes in Fuel Cells -- 4 Ionic Liquid Polymer Membranes for Fuel Cells -- 4.1 Ionic Liquid/Polymer Membranes -- 4.2 Polymerized Ionic Liquid Membranes -- 4.3 IL Gel and Composite Polymer Membranes -- 5 Conclusions -- Acknowledgements -- References -- 2 Organic/TiO2 Nanocomposite Membranes: Recent Developments -- Abstract -- 1 Introduction -- 2 TiO2-Polymer Electrolyte Membranes (PEMs) -- 2.1 Perfluorinated Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes (PEMs) -- 2.2 Acid-Base Polymer Complex-Based Organic-Inorganic Nanocomposite PEMs -- 2.3 TiO2-Modified Polytetrafluoroethylene Membranes -- 2.4 Poly(ether ether ketone)-Based Nanocomposite PEMs -- 2.5 PANI Based Membranes -- 2.6 PES Based Membranes -- 2.7 Polysulfone-Based Membranes -- 2.8 TiO2 Solar Cells -- 2.9 Carbon Materials and Metal-Carbon Nanotube (CNTs)-TiO2 Composites -- 2.9.1 Carbon-TiO2 Composites -- 2.9.2 Graphene (GN)-TiO2 Composites -- 3 Conclusions -- Acknowledgements -- References -- 3 Organic/Silica Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Silica Nanoparticle-Based Membranes -- 3 Conclusion -- References -- 4 Organic/Zeolites Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Basic Concepts About Zeolites -- 3 Polymer-Zeolite Composite Membranes: The Role of the Zeolite -- 3.1 Influence of Si/Al Ratio -- 3.2 Proton Mobility in Zeolites -- 3.3 Internal and External Surface Area -- 3.4 Configurational Diffusion -- 3.5 Crystallite Size [17, 18] -- 3.6 Functionalization of Zeolite Surface -- 3.7 Selectivity, Proton Conductivity, and Permeability. , 4 Techniques for Producing Organic/Zeolite Nanocomposite Membranes -- 5 Synthetic Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 5.1 Route 1: Zeolite + Organic Monomers -- 5.2 Route 3: Inorganic Precursor + Organic Polymer -- 5.3 Route 4: Zeolite + Organic Polymer -- 6 Natural Polymers/Zeolite Nanocomposite Membranes for PEMFCs -- 7 Conclusions -- Acknowledgements -- References -- 5 Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells -- Abstract -- 1 Introduction -- 2 Heteropolyacids Types and Structures -- 3 HPAs and Proton Transport in Fuel Cells -- 4 HPAs in PEM Fuel Cell -- 5 HPAs in High-Temperature and Low-Humidity PEMFC -- 6 HPAs in DMFC -- 7 Concluding Remarks and Future Perspectives -- Acknowledgements -- References -- 6 Organic/Montmorillonite Nanocomposite Membranes -- Abstract -- 1 Introduction -- 2 Membrane Fabrication Methods -- 2.1 Phase Inversion -- 2.2 Immersion Precipitation -- 2.3 Evaporation-Induced Phase Separation -- 3 Montmorillonite-Based Nanocomposites Membranes -- 4 Conclusion -- References -- 7 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells -- Abstract -- 1 Introduction -- 2 Methanol Crossover and Low Proton Conductivity -- 3 Composite SPEEK -- 4 SPEEK-Clay Nanocomposite as PEM for DMFC -- 5 Morphology Types and the Importance of Exfoliated Surface Structure on DMFC Performance -- 6 Preparation of Exfoliated Nanocomposite Membranes -- 7 Electrospinning as a Membrane Morphological Modification Technique -- 8 Electrospun Polymer-Based Nanofiber Membranes for DMFC Application -- 9 Electrospinning Parameters -- 10 Future Directions and Conclusion -- References -- 8 A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency -- Abstract -- 1 What Is a Fuel Cell? -- 2 Fuel Cell Structure and Classification -- 3 Fuel Cell Construction. , 4 PEMFC Types, Electrode Reactions, and Cell Potential -- 4.1 H2/O2 PEMFC -- 4.2 Direct Methanol Fuel Cells (DMFC) -- 4.3 Direct Ethanol Fuel Cells (DEFC) -- 4.4 Direct Formic Acid Fuel Cells (DFAFC) -- 4.5 Direct Borohydride Fuel Cells (DBFCs) -- 5 Fuel Cell Thermodynamics -- 5.1 Effect of Temperature -- 5.2 Effect of Pressure -- 5.3 Effect of Concentration of Reactant -- 6 Fuel Cell Efficiency -- 6.1 Losses in Actual System -- 6.2 Activation Overpotential -- 6.3 Ohmic Polarization Losses -- 6.4 Mass Transport Overpotential -- 7 Conclusion -- References -- 9 Organic/Inorganic and Sulfated Zirconia Nanocomposite Membranes for Proton-Exchange Membrane Fuel Cells -- Abstract -- 1 Introduction -- 1.1 Proton-Exchange Membranes (PEMs) -- 2 Organic/Inorganic Hybrid Membranes -- 3 Organic-Sulfated Metal Oxide Hybrid Membrane -- 4 Sulfated Zirconia Nanocomposite Membranes -- 5 Conclusion and Future Prospects -- Acknowledgements -- References -- 10 Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 General Description of Performance Improvements in PEMFCs -- 2.1 Proton Exchange Membrane -- 2.2 Electrode and Catalyst -- 2.3 Gas Diffusion Layer -- 2.4 Membrane Electrode Assembly -- 2.5 Bipolar Plate -- 2.6 Single Cell and Stack -- 2.6.1 Water and Heat Management -- 2.6.2 Fuel Crossover, Oxidation, and CO Poisoning -- 2.6.3 Scale-up and Long-Term Experiments -- 3 Structured Techniques for Flow-Field Optimization -- 3.1 Experimental Approaches to Flow-Field Optimization -- 3.1.1 Current Density Measurement -- 3.1.2 Flow Visualization -- 3.1.3 Polarization Curve Evaluation -- 3.2 Modeling Approaches to Flow Optimization -- 3.2.1 Computational Fluid Dynamic Modeling -- 3.2.2 Two-Phase Modeling for Water Management -- 3.2.3 Complex Flow-field Interaction Modeling. , 3.3 Validation of Experimental and Numerical Results -- 4 New Flow-field Optimization Approaches Utilizing Under-Rib Convection -- 4.1 Homogeneous Distribution of the Reactants -- 4.2 Uniformity of Temperature and Current Density Distributions -- 4.3 Facilitation of Liquid Water Discharge -- 4.4 Reduction in Pressure Drop -- 4.5 Improvement in Output Power -- 5 Summary -- References -- 11 Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Methods for Preparation of Nanocomposite Polymer Electrolyte Membranes -- 2.1 Blending of Nanoparticles in Polymer Matrix -- 2.1.1 Phase Inversion Method for Preparation of PEMs -- 2.1.2 Solution Casting Method -- 2.1.3 Hot Press -- 2.2 Doping or Infiltration and Precipitation of Nanoparticles and Precursors -- 2.3 Self-assembly of Nanoparticles -- 2.4 Non-hydrolytic Sol-Gel (NHSG) Method -- 2.5 Layer-by-Layer Fabrication Method -- 2.6 Nonequilibrium Impregnation Reduction -- 2.7 Surface Patterning Method -- 3 Future Directions and Conclusion -- References -- 12 An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane -- Abstract -- 1 Introduction -- 2 Durability of Polymer Electrolyte Membrane (PEM) -- 3 Proton Conductivity of PEM -- 4 Chemical Stabilities and Degradation of PEM -- 5 Mechanical Stability and Degradation of PEM -- 6 Conclusion -- Acknowledgements -- References -- 13 Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Fuel Cells -- Abstract -- 1 Introduction -- 2 Electrospinning Process -- 2.1 Electrospun Fibers -- 2.1.1 Poly(vinylidene fluoride) (PVDF) -- 2.1.2 Poly(vinyl alcohol) (PVA) -- 2.1.3 Poly(phenylene oxide) (PPO) -- 2.1.4 Poly(arylene ether)s -- 2.1.5 Poly(imide)s -- 2.1.6 Poly(benzimidazole) (PBI) -- 2.2 Crosslinking of Electrospun Fibers. , 2.3 Interface Bonding -- 3 Reducing Methanol Crossover -- 4 Improving Proton Conductivity -- 4.1 Electrospinning of Nafion -- 4.2 Aligned Nanofibers -- 5 Other Applications of Electrospinning in Fuel Cells -- 6 Conclusion -- References -- 14 Fabrication Techniques for the Polymer Electrolyte Membranes for Fuel Cells -- Abstract -- 1 Introduction -- 2 Recent Developments of PEM-Based on Organic-Inorganic Nanocomposites -- 3 Fabrication Techniques for the Preparation of PEM -- 3.1 Different Polymerization Routes -- 3.2 Plasma Methods -- 3.3 Sol-Gel Method -- 3.4 Ultrasonic Coating Technique -- 3.5 Phase Inversion Method -- 3.6 In Situ Reduction -- 3.7 Catalyst-Coated Membrane by Screen Printing Method -- 3.8 Solution Casting Method -- 3.9 Other Methods -- 4 Summary -- Acknowledgements -- References -- 15 Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications -- Abstract -- 1 Introduction -- 2 Chitosan: An Overview -- 3 Characterization of the Polymer Membrane and Their Desired Properties -- 4 Chitosan Based Membranes for Polymer Electrolyte -- 4.1 Chitosan Blend Polymer Electrolyte -- 4.2 Chitosan Cross-Linked Polymer Electrolyte -- 4.3 Chitosan Polymer Composite Based Polymer Electrode -- 5 Chitosan for Fuel Cell -- 6 Chitosan for Biofuel Cell -- 6.1 Microbial Biofuel Cell -- 6.2 Enzymatic Biofuel Cell -- 7 Conclusions -- Acknowledgements -- References -- 16 Fuel Cells: Construction, Design, and Materials -- Abstract -- 1 Introduction -- 2 Different Types of Fuel Cells -- 3 Construction and Design of Different FC -- 3.1 PEMFC -- 3.2 DMFC -- 3.3 AEMFC -- 3.4 PAFC -- 3.5 SOFC -- 3.6 MCFC -- 4 Catalysts for Different FCs -- 5 Materials and Methods for Preparation of PEM for Fuel Cells -- 6 Characterizations and Characteristic Properties of PEM for Different FC -- 7 Summary -- References. , 17 Proton Conducting Polymer Electrolytes for Fuel Cells via Electrospinning Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: City planning-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (122 pages)
    Edition: 1st ed.
    ISBN: 9789811335433
    Series Statement: Studies in Systems, Decision and Control Series ; v.192
    DDC: 307.1216
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- About This Book -- Remorph: A Framework for Application of Computer Vision and Audition in Urban Analysis -- Contents -- About the Authors -- Abbreviations -- List of Figures -- 1 Application of AI in Urban Design -- 1.1 Overview -- 1.2 Book Structure -- 1.3 Situating the Question in the General Field of Inquiry -- 1.4 Remorph as an Analytical Tool for Urban Studies -- 1.4.1 Computer Vision and Its Application in Urban Planning and Design -- 1.4.2 A Brief History of Computer Audition and Its Application in Urban Planning and Design -- 1.4.3 A Brief History of Data Visualization in Urban Planning and Design -- 1.4.4 A Brief History of City as a Cybernetic Mechanism and Application of Data-Driven Analysis in Urban Planning and Design -- 2 Computer Audition in Urban Studies: Theory, Techniques and Rules of Application -- 2.1 Introduction -- 2.2 Disambiguation -- 2.3 Finding a Question, Identifying Perfect Strategy of Auditory Data Collection and Urban Sonification -- 2.3.1 Single Sensor -- 2.3.2 Multi Array of Sensors -- 2.3.3 Pointwise Sound Acquisition -- 2.3.4 Linear Sound Acquisition -- 2.4 Understanding Theory, Techniques and Rules of Producing Urban Soundscapes -- 2.4.1 Spatial Soundscapes -- 2.4.2 Temporal Soundscapes -- 2.5 Understanding Theory, Techniques and Rules of Audio-Metrication -- 2.5.1 Pitch Extraction Techniques -- 2.5.1.1 Neural Network Pitch Detection -- 2.5.1.2 YAAPT Pitch Detection -- 2.5.1.3 LPC Pitch Detection -- 2.5.1.4 Autocorrelation Pitch Detection -- 2.5.1.5 Cepstral Pitch Detection -- 2.5.1.6 Dynamic Time Warping -- 2.5.2 Melody -- 2.5.3 Spectrogram -- 2.6 Understanding Theory, Techniques and Rules of Soundscape Analysis -- 2.7 Understanding Theory, Techniques and Rules of Sound-Scape Representation (Citygrams) -- 2.7.1 Preprocessing Phase -- 2.7.2 Acoustic Feature Extraction. , 2.7.3 Acoustic Feature Modelling -- 2.8 Urban Audio Processing -- 2.9 Audio Segmentation -- 2.10 Audio Classification -- 2.11 Melodification -- 2.12 Conclusion -- 3 Computer Vision in Urban Studies: Theory, Techniques and Rules of Application -- 3.1 Introduction -- 3.2 Disambiguation -- 3.3 What Is Computer Vision -- 3.4 Brief History of Computer Vision -- 3.5 Introduction to Various Techniques of Computer Vision -- 3.5.1 Blob Detection -- 3.5.2 Shape Detection -- 3.5.3 Color Detection -- 3.5.4 Tracking -- 3.5.5 Size Detection -- 3.5.6 Identity Detection -- 3.5.7 Filtering -- 3.6 Kmeans Clustering -- 3.7 Overall Approach -- 3.7.1 Green Detection -- 3.7.1.1 Extract the Official Boundary of the City in Terms of Longitudes and Latitudes -- 3.7.1.2 Compute the Region of Interest (ROI) -- 3.7.1.3 Segmented the Overall Space of the City into Series of the High Resolution Images -- 3.7.1.4 Compute the Green Area of the Masked Aerial Images Separately -- 3.7.1.5 Calculate the Overall Green Per Capita and Convert Zoom Level to Square Meter -- 3.7.1.6 Plot Green Per Capita with Respect to Zoom Level and Select the Most Fitness Line -- 3.7.2 Road (Network) Detection -- 3.7.3 Water Detection -- 3.7.4 Desert Detection -- 3.7.5 Built-Up Detection -- 3.7.6 Skyline Detection -- 3.8 Conclusion -- 4 Remorph Is a Pedagogical Framework -- 4.1 Introduction -- 4.2 Introducing the Structure of a Remorph Workshops -- 4.3 Remorph01: Urban Melodies (Application of the Computer Audition in Urban Planning and Design) -- 4.3.1 Data Acquisition -- 4.3.2 Visualization and Melodification of Data -- 4.3.3 Data Analysis -- 4.3.3.1 Sound Segmentation -- 4.3.3.2 Sound Classification -- 4.4 Remorph02: Urban Processing (Application of the Computer Vision in Urban Planning and Design) -- 4.4.1 Data Acquisition -- 4.4.2 Data Visualization -- 4.4.3 Data Analysis -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (197 pages)
    Edition: 1st ed.
    ISBN: 9783319744827
    Series Statement: University of Tehran Science and Humanities Series
    DDC: 333.79
    Language: English
    Note: Intro -- Contents -- Introduction -- 1 Biomass as a Source of Energy -- 1.1 Biomass Definition -- 1.2 Biomass Classification -- 1.3 Biomass Chemical Elements and Compositions -- 1.4 Ash from Biomass -- 1.4.1 Ash Chemistry -- 1.4.2 Ash Fusion Temperature (Melting Behavior) -- 1.5 Biomass Application as a Source of Energy -- 1.5.1 Direct Application -- 1.5.1.1 Direct Combustion -- Space Heating Application -- Fuel Storage -- Fuel Delivery -- Combustor -- Heat Exchanger -- Ash Bin -- Stack -- Emission Control System -- Electricity Production -- 1.5.1.2 Co-firing -- 1.5.1.3 Combined Heat and Power (CHP) -- 1.6 Summary -- References -- 2 Biomass Densification -- 2.1 Problems Associated with Direct Application of Biomass -- 2.2 Biomass Conversion to Biofuel -- 2.3 Densification Process -- 2.3.1 Mechanical Densification -- 2.3.2 Thermochemical Densification -- 2.4 Mechanical Densification (Agglomeration) Mechanism -- 2.5 Agglomeration Technique -- 2.5.1 Tumble Agglomeration -- 2.5.1.1 Tumble Agglomerator Equipment -- 2.5.2 Pressure Agglomeration -- 2.5.2.1 Pressure Agglomeration Equipment -- References -- 3 Wood Pellet -- 3.1 What Is Pelleting? -- 3.2 Pellet Structure -- 3.3 Raw Material for Pellet Production -- 3.4 Wood as Raw Material for Pellet Production -- 3.4.1 Primary Sources -- 3.4.2 Secondary Sources -- 3.5 Chemical Composition of Wood -- 3.5.1 Cellulose -- 3.5.2 Hemicellulose -- 3.5.3 Lignin -- 3.5.4 Pectin -- 3.5.5 Solvent Extractives -- 3.6 Physical Properties of Wood -- 3.6.1 Ash Content -- 3.6.2 Moisture Content -- 3.7 Wood Pellet History -- 3.8 Softwood Pellet and Hardwood Pellet -- 3.8.1 Softwood -- 3.8.2 Hardwood -- 3.9 Pellet Advantages and Disadvantages -- References -- 4 Wood Pellet Production Process -- 4.1 Pelleting Plant -- 4.1.1 Raw Material Delivery -- 4.1.2 Screening Contaminants of Raw Material -- 4.1.3 Drying of Raw Material. , 4.1.3.1 Rotary Drum Dryer -- 4.1.3.2 Belt Dryer -- 4.1.3.3 Flash Dryer -- 4.1.4 Grinding of Particle Size of Raw -- 4.1.4.1 Hammer Mill -- 4.1.4.2 Roller Mill -- 4.1.5 Conditioning -- 4.1.6 Pellet Mill -- 4.1.7 Cooling of Pellets -- 4.1.7.1 Cooler Type -- 4.1.8 Dust Collector -- 4.1.9 Screening of Fine Particles -- 4.1.10 Storage of Pellet -- 4.1.10.1 Bulk Storage -- 4.1.10.2 Bagging Process -- 4.1.10.3 Pellet Storage Caution -- 4.1.11 Pellet Delivery -- 4.2 Storage Apparatus -- 4.3 Storage Chamber Installation Room -- 4.4 Room Storage Features -- 4.5 Tank to Combustion Chamber Delivery System -- 4.5.1 Auger Collector or Screw Feeder for Storage Chambers -- 4.5.2 Air Conveying System -- References -- 5 Pellet Production Variables -- 5.1 Feedstock Variables -- 5.1.1 Availability (Wood Pellet and Biomass Pellet) -- 5.1.2 Moisture Content -- 5.1.3 Ash Content -- 5.1.4 Particle Size, Shape, and Distribution -- 5.1.5 Chemical Composition (Cellulose, Hemicelluloses, and Lignin) -- 5.1.6 Feed Formulation -- 5.2 Process Variables -- 5.2.1 Temperature -- 5.2.2 Pressure -- 5.2.3 Retention and Relaxation Time -- 5.2.4 Pellet Die Material and Specifications -- 5.2.5 The Forces in Pellet Mill -- 5.2.6 Conditioning -- 5.2.6.1 Steam Temperature and Pressure -- 5.2.6.2 Retention Time -- 5.2.7 Cooling -- 5.2.8 Manufacturing Throughput Time -- References -- 6 Wood Pellet Production Standards -- 6.1 Solid Biofuel Standards -- 6.2 Pellet Standards Parameters -- 6.2.1 Sweden -- 6.2.2 Germany -- 6.2.3 Austria -- 6.2.4 Denmark -- 6.2.5 Finland -- 6.2.6 Italy -- 6.2.7 Norway -- 6.2.8 PFI -- 6.3 European Common Standard -- 6.3.1 European Standard (EN) -- 6.3.2 CEN Workshop Agreement (CWA) -- 6.3.3 Technical Specifications (CEN/TS) -- 6.3.4 Technical Report (CEN/TR) -- References -- 7 Wood Pellet Characteristics (Definition, Determination and Internal Relation). , 7.1 Physical Properties -- 7.1.1 Unit Density -- 7.1.1.1 Determination -- Liquid Displacement Methods -- The Hydrostatic Method -- The Buoyancy Method -- Stereometric Methods -- Solid Displacement Method -- 7.1.1.2 Factor Effecting Pellet Density -- 7.1.2 Bulk Density -- 7.1.2.1 Determination -- 7.1.3 Particle Size and Distribution -- 7.1.3.1 Determination -- 7.1.4 Fines Percentage -- 7.1.4.1 Determination -- 7.1.5 Strength and Resistances -- 7.1.5.1 Compressive Resistance -- 7.1.5.2 Impact Resistance -- 7.1.5.3 Water Resistance -- 7.1.5.4 Abrasive Resistance (Durability) -- Durability Determination -- 7.1.5.5 Factor Effecting Strength and Durability -- Effect of Feed Constituents -- Effect of Feed Moisture Content -- Effect of Particle Size and Density -- Effect of Steam Conditioning/Preheating of Feed -- Effect of Binders/Additives -- Densification Equipment Variables -- 7.1.6 Particle Flow and Bridging Properties -- 7.1.6.1 Factor Effecting Bridging Properties -- 7.1.7 Calorific Value (MJ/Kg) -- 7.1.7.1 Calorific Value Determination -- Gross Calorific Value (GCV or HHV) -- Net Calorific Value (NCV or LHV) -- Net Calorific Value as Received -- Energy Density as Received -- 7.1.7.2 Factor Effecting Calorific Value -- 7.2 Chemical Properties (Proximate and Ultimate Analysis) -- 7.2.1 Moisture Content (%) -- 7.2.1.1 Determination -- 7.2.2 Ash Content -- 7.2.2.1 Ash Content Determination -- 7.2.2.2 Ash Melting Behavior -- 7.2.3 Element Analysis -- 7.2.3.1 Determination of Total Content of C, H and N (Based on CEN/TS 15104) -- 7.2.3.2 Determination of Total Content of Sulphur and Chlorine (Base on CEN/TS 15289) -- 7.2.3.3 Determination of Volatile Matter (Based on CEN/TS 15148) -- 7.2.3.4 Determination of Major Elements -- Digestion and Decomposition -- Detection Methods -- 7.2.3.5 Determination of Minor or Trace Elements. , 7.3 Interdependency Among Physical/Mechanical Properties -- References -- 8 Wood Pellet Combustion -- 8.1 Combustion Phases -- 8.1.1 Pre-ignition -- 8.1.2 Flaming Combustion -- 8.1.3 Smoldering Combustion -- 8.1.4 Glowing Combustion (Char Combustion) -- 8.2 Large Scale Pellet Heating System -- 8.3 Domestic Combustion System -- 8.4 Storage -- 8.5 Feeding System -- 8.5.1 Feeding from Storage Chamber to Hopper of Burner -- 8.5.2 Feeding from Hopper of Burner to Combustion Cup -- 8.6 Combustion Chamber -- 8.6.1 Fuel Dosage Control -- 8.6.2 Oxygen Supply -- 8.6.3 Lambda Parameter -- 8.6.4 Ignition Method -- 8.6.5 Proper Temperature -- 8.6.6 Thermostat -- 8.6.7 Suitable Mixing -- 8.6.8 Retention Time -- 8.6.9 Suitable Chamber Size -- 8.6.10 Burn Pot and Ash Removal System -- 8.7 Flue Gas Outlet and Chimneys -- 8.7.1 Factors in Choosing Venting System -- 8.8 Variable Affecting a Combustion System Performance -- 8.9 Boiler Efficiency -- References -- 9 Wood Pellet Emissions -- 9.1 Total Emission -- 9.2 Chemical Emissions (Off-Gassing) -- 9.3 Physical Emissions -- 9.4 Emission Factor -- 9.5 Emission Generation -- 9.5.1 Emission During Pellet Production Process -- 9.5.2 Emission During Storage and Transportation -- 9.5.2.1 Formation of Alkanals and Alkyl Aldehyde -- 9.5.2.2 Formation of Carbon Monoxide -- 9.5.3 Emission During Combustion Process -- 9.5.3.1 NOx -- 9.5.3.2 CO2 and CO -- 9.5.3.3 SOx -- 9.5.3.4 Volatile Organic Compound (VOCs) -- 9.5.3.5 Polycyclic Aromatic Hydrocarbons (PAHs) -- 9.5.3.6 Semi-volatile Compounds -- 9.5.3.7 Persistent Organic Pollutants (Pops) -- 9.5.3.8 Dioxin -- 9.5.3.9 Hcb -- 9.5.3.10 PCBs -- 9.5.3.11 Heavy Metals (HM) Emission -- 9.5.3.12 Particular Matters (PM) -- 9.5.3.13 Ash -- Main Ash Forming Elements -- Variable Effecting Ash Formation -- Raw Material Variables -- Operating Variables -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Medicine ; Radiology, Medical ; Internal medicine ; Medicine & Public Health ; Internal medicine ; Radiology, Medical ; Medicine ; Atlas ; Multiple Sklerose ; Kernspintomografie
    Description / Table of Contents: MRI has become the main paraclinical test in the diagnosis and management of multiple sclerosis. We have demonstrated more than 400 pictures of different typical and atypical MS lesions in this atlas. Each image has a teaching point. New diagnostic criteria and differential diagnosis have been discussed and the book is supported by a teaching DVD that you can see MS lesions in different slices and sequences.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XIV, 178 p. 218 illus., 9 illus. in color, digital)
    ISBN: 9783540713722
    Series Statement: SpringerLink
    RVK:
    RVK:
    RVK:
    Language: English
    Note: Includes bibliographical references and index , Front Matter; MS Lesions in T2-Weighted Images; MS Lesions in Fluid Attenuated Inversion Recovery Images; Gadolinium Enhancing Lesions in Multiple Sclerosis; T1 Hypointense Lesions (Black Holes); Multiple Sclerosis and Brain Atrophy; Pitfalls in the Depiction of MS Lesions on Conventional MRI; Magnetic Resonance Imaging of the Spinal Cord in Multiple Sclerosis; Diagnosis of Multiple Sclerosis; Differential Diagnosis of Multiple Sclerosis; Back Matter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Electronic books
    Description / Table of Contents: Intro -- Abstract -- Sammanfattning -- Acknowledgements -- List of appended papers -- Nomenclature -- Table of Contents -- 1 Introduction -- 2 Methods -- 3 Results and discussion -- 4 Conclusions -- 5 Outlook -- References.
    Type of Medium: Online Resource
    Pages: 1 online resource (109 pages)
    Edition: 1st ed.
    ISBN: 9789175190471
    Series Statement: Linköping University Medical Dissertations Ser. v.1677
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Keywords: AAMGC1; AAMGC2; AAMGC3; AASGC1; AASGC2; AASGC3; AASMC1; AASMC2; AASMC3; Arabian Gulf; BIO; Biology; Calcium carbonate; Carbon, inorganic, total; DISTANCE; Event label; Latitude of event; Longitude of event; RTMGC1; RTSGC1; RTSGC2; RTSGC3; RTSMC1; RTSMC2; SAMGC1; SAMGC2; SAMGC3; SASMC1; SSGC1; SSGC2; SSGC3; UQSGC1; UQSGC2; UQSGC3
    Type: Dataset
    Format: text/tab-separated-values, 484 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-13
    Keywords: AHS1; AHS10; AHS2; AHS5; AHS6; AHS7; AHS8; AHS9; AMH1; AMH2; BIO; Biology; Calcium carbonate; Carbon, inorganic, total; DISTANCE; EMA; EMB; EMC; EMD; EME; EMG; EMX; EMY1; Event label; KMA; KMB; KMC; KMD; KME; Latitude of event; Longitude of event; PRSA; PRSB; Red Sea; RMA; RMB; RMC; RMD; RMF; RMG; RSA; RSB; RSC; RSD; RSE; RSF; RSG; RSH; RSI; RSJ; TMA; TMB; TMC; TMD; TME; TMF; TMG; TMZ; TSA; TSB; TSC
    Type: Dataset
    Format: text/tab-separated-values, 872 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...