GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Here, we present a range of interactions, which we term “cryptic interactions.” These are interactions that occur throughout the marine planktonic foodweb but are currently largely overlooked by established methods, which mean large‐scale data collection for these interactions is limited. Despite this, current evidence suggests some of these interactions may have perceptible impacts on foodweb dynamics and model results. Incorporation of cryptic interactions into models is especially important for those interactions involving the transport of nutrients or energy. Our aim is to highlight a range of cryptic interactions across the plankton foodweb, where they exist, and models that have taken steps to incorporate these interactions. Additionally, it is discussed where additional research and effort is required to continue advancing our understanding of these cryptic interactions. We call for more collaboration between ecologists and modelers in order to incorporate cryptic interactions into biogeochemical and foodweb models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Millette, N. C., da Costa, M., Mora, J. W., & Gast, R. J. Temporal and spatial variability of phytoplankton and mixotrophs in a temperate estuary. Marine Ecology Progress Series, 677, (2021): 17–3,. https://doi.org/10.3354/meps13850.
    Description: A significant proportion of phototrophic species are known to be mixotrophs: cells that obtain nutrients through a combination of photosynthesis and prey ingestion. Current methods to estimate mixotroph abundance in situ are known to be limited in their ability to help identify conditions that favor mixotrophs over strict autotrophs. For the first time, we combine microscopic analysis of phototrophic taxa with immunoprecipitated bromodeoxyuridine (BrdU)-labeled DNA amplicon sequencing to identify and quantify active and putative mixotrophs at 2 locations in a microtidal temperate estuary. We analyze these data to examine spatial and temporal variability of phytoplankton and mixotrophs. Microscopy-based phototrophic diversity and abundances reveal expected seasonal patterns for our 2 stations, with the start of growth in winter and highest abundances in summer. Diatoms tend to dominate at the site with less stratification, while dinoflagellates and euglenids are usually more prominent at the stratified station. The BrdU-based mixotroph identifications are translated to the microscopy identification and abundances to estimate the proportion of mixotrophs (cells 〉10 µm in size) at both sites. The average proportion of potential mixotrophs is higher at the station with higher stratification (51%) compared to the station with lower stratification (30%), and potential mixotrophs tend to be higher in summer, although we did not conduct BrdU experiments in any of the other seasons. Combining the identification of active mixotrophs through the uptake of BrdU-labeled bacteria with robust abundance measurements can expand our understanding of mixotrophs across systems.
    Description: N.C.M. was funded by a Woods Hole Sea Grant Postdoctoral Fellowship (award number NA14OAR4170074), and M.dC. was funded by a WHOI Summer Student Fellowship. This is VIMS contribution number 4057.
    Keywords: Phytoplankton ; Mixotrophs ; Estuaries ; Chl a
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Millette, N. C., Kelble, C., Linhoss, A., Ashby, S., & Visser, L. Using spatial variability in the rate of change of chlorophyll a to improve water quality management in a subtropical oligotrophic estuary. Estuaries and Coasts, 42(7), (2019): 1792-1803, doi:10.1007/s12237-019-00610-5.
    Description: Anthropogenic eutrophication threatens numerous aquatic ecosystems across the globe. Proactive management that prevents a system from becoming eutrophied is more effective and cheaper than restoring a eutrophic system, but detecting early warning signs and problematic nutrient sources in a relatively healthy system can be difficult. The goal of this study was to investigate if rates of change in chlorophyll a and nutrient concentrations at individual stations can be used to identify specific areas that need to be targeted for management. Biscayne Bay is a coastal embayment in southeast Florida with primarily adequate water quality that has experienced rapid human population growth over the last century. Water quality data collected at 48 stations throughout Biscayne Bay over a 20-year period (1995–2014) were examined to identify any water quality trends associated with eutrophication. Chlorophyll a and phosphate concentrations have increased throughout Biscayne Bay, which is a primary indicator of eutrophication. Moreover, chlorophyll a concentrations throughout the northern area, where circulation is restricted, and in nearshore areas of central Biscayne Bay are increasing at a higher rate compared to the rest of the Bay. This suggests increases in chlorophyll a are due to local nutrient sources from the watershed. These areas are also where recent seagrass die-offs have occurred, suggesting an urgent need for management intervention. This is in contrast with the state of Florida listing of Biscayne Bay as a medium priority impaired body of water.
    Description: Data provided by the SERC-FIU/SFWMD Water Quality Monitoring Network is supported by SFWMD/SERC Cooperative Agreement #4600000352 as well as EPA Agreement #X7-96410603-3. This research was also funded by a NOAA/Atlantic Oceanographic and Meteorological Laboratory grant to the Northern Gulf Institute (award number NA160AR4320199).
    Keywords: Chlorophyll a ; Eutrophication ; Oligotrophic ; Ecological indicators
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...