GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 27 (1962), S. 2646-2648 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-08
    Description: In this paper, we present measurements of He + and He +2 ion-induced sputtering of an anorthite-like thin film at a fixed solar-wind-relevant impact energy of ~0.5 keV/amu using a quartz crystal microbalance approach (QCM) for determination of total absolute sputtering yields. He +2 ions are the most abundant multicharged ions in the solar wind and increased sputtering by these ions in comparison to equi-velocity He + ions is expected to have the biggest effect on the overall sputtering efficiency of solar wind impact on the moon. Our measurements indicate an almost doubling of the sputtering yield for doubly charged incident He ions compared to same velocity He + impact. Using a selective sputtering model, the new QCM results presented here, together with previously published results for Ar +q ions and SRIM results for the relevant kinetic sputtering yields, the effect due to multicharged solar-wind ion impact on local near-surface modification of lunar anorthite-like soil is explored. It is shown that the multicharged solar wind component leads to a more pronounced and significant differentiation of depleted and enriched surface elements as well as a shortening of the timescale over which such surface compositional modifications might occur in astrophysical settings. In addition, to validate previous and future determinations of multicharged-ion-induced sputtering enhancement for those cases where the QCM approach can’t be used, relative quadrupole-mass-spectrometry (QMS) based measurements are presented for the same anorthite-like thin film as were investigated by QCM, and their suitability and limitations for charge-state-enhanced yield measurements are discussed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-12
    Description: Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...