GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2020-02-26
    Description: 230Th‐normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regards to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the Late Holocene (0‐5000 years ago, or 0‐5 ka) and the Last Glacial Maximum (18.5‐23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79‐2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48‐1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th‐normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (〉 1000 m water depth).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2018, doi:10.1029/2003PA000986.
    Description: The eastern equatorial Pacific (EEP) is an important center of biological productivity, generating significant organic carbon and calcite fluxes to the deep ocean. We reconstructed paleocalcite flux for the past 30,000 years in four cores collected beneath the equatorial upwelling and the South Equatorial Current (SEC) by measuring ex230Th-normalized calcite accumulation rates corrected for dissolution with a newly developed proxy for “fraction of calcite preserved.” This method produced very similar results at the four sites and revealed that the export flux of calcite was 30–50% lower during the LGM compared to the Holocene. The internal consistency of these results supports our interpretation, which is also in agreement with emerging data indicating lower glacial productivity in the EEP, possibly as a result of lower nutrient supply from the southern ocean via the Equatorial Undercurrent. However, these findings contradict previous interpretations based on mass accumulation rates (MAR) of biogenic material in the sediment of the EEP, which have been taken as reflecting higher glacial productivity due to stronger wind-driven upwelling.
    Description: This research was partly supported by NSF grant OCE-0095617 and funds from the Northern Illinois University Graduate School (Loubere); the NASA Michigan Space Grant Consortium Seed Grant for summer, 2001 for 230Th analyses at WHOI (Mekik); the French Ministere de l’Education Nationale, de la Recherche et de la Technologie, and a EURODOC grant from the Region Rhone-Alpes (Pichat).
    Keywords: Calcite fluxes ; Eastern equatorial Pacific ; Glacial-interglacial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-29
    Description: Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two species Neogloboquadrina dutertrei and Neogloboquadrina incompta over the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites.
    Description: Plain Language Summary: The 15N/14N ratio of sediments provides information on the past marine nitrogen (N) cycle through the production of N‐bearing organic matter in the surface ocean and its burial in the sediments. Previous measurements of the sedimentary 15N/14N ratio in the eastern equatorial Pacific (EEP) indicate lower values during the last ice age compared to the Holocene (the current warm period). This has been interpreted to reflect an ice age reduction in the oceanic N loss process known as “denitrification” that occurs between 200 and 500 m depth in this region of the ocean. However, the 15N/14N ratio measured on the whole sediment can be biased by biological and chemical processes in the sediments and by foreign N inputs. To avoid these complications, we measured the 15N/14N ratio of organic N embedded in the calcite shell of unicellular zooplankton (foraminifera) in two sediment cores from the EEP. We found similar foraminifera‐bound 15N/14N ratios during the last ice and the Holocene. This may argue against the long‐held interpretation of a reduction in denitrification during the last ice age. However, the oceanographic setting of these equatorial cores leaves open alternative interpretations, calling for further work at other eastern tropical Pacific sites.
    Description: Key Points: Foraminifera‐bound δ15N was similar during the last ice age and the Holocene in the eastern equatorial Pacific, unlike bulk sedimentary δ15N. Bulk sediment δ15N is likely biased to lower ice age values by foreign N inputs and weaker sedimentary diagenesis. The foraminifera‐bound δ15N data may reflect that water column denitrification was not reduced during the last glacial period.
    Description: Swiss National Science Foundation
    Description: US National Science Foundation
    Description: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung http://dx.doi.org/10.13039/501100001711
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Keywords: 551.9 ; Pacific Ocean ; nitrogen isotopes ; denitrification ; suboxia ; Last Glacial Maximum ; Holocene
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina, L. L., Dutay, J., German, C. R., Heimburger-Boavida, L., Jaccard, S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M., V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., & Zhang, J. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35(4), (2021): e2020GB006769, https://doi.org/10.1029/2020GB006769.
    Description: Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
    Description: This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US-NSF. The work grew out of a 2018 workshop in Aix-Marseille, France, funded by PAGES, GEOTRACES, SCOR, US-NSF, Aix Marseille Université, and John Cantle Scientific, and the authors would like to acknowledge all attendees of this meeting. The authors acknowledge the participants of the 68th cruise of RV Akademik Mstislav Keldysh for helping acquire samples. Christopher T. Hayes acknowledges support from US-NSF awards 1658445 and 1737023. Some data compilation on Arctic shelf seas was supported by the Russian Science Foundation, grant number 20-17-00157. This work was also supported through project CRESCENDO (grant no. 641816, European Commission). Zanna Chase acknowledges support from the Australian Research Council’s Discovery Projects funding scheme (project DP180102357). Christopher R. German acknowledges US-NSF awards 1235248 and 1234827. Some colorbars used in the figures were designed by Kristen Thyng et al. (2016) and Patrick Rafter.
    Keywords: Barium ; Carbon cycle ; Marine atlas ; Mercury ; Opal ; Sediment burial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.
    Description: 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (〉1,000 m water depth).
    Description: We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791.
    Keywords: Thorium ; Sediment flux ; Holocene ; LGM ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-12
    Keywords: DEPTH, sediment/rock; ERDC; ERDC-089PG; GC; Gravity corer; Mass; Sample code/label; Thomas Washington
    Type: Dataset
    Format: text/tab-separated-values, 190 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mekik, Figen; Francois, Roger (2006): Tracing deep-sea calcite dissolution: Agreement between the| Globorotalia menardii fragmentation index and elemental ratios (Mg/Ca and Mg/Sr) in planktonic foraminifers. Paleoceanography, 21(4), PA4219, https://doi.org/10.1029/2006PA001296
    Publication Date: 2023-05-12
    Description: Accurately quantifying deep-sea calcite dissolution is crucial for understanding the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We compare a foraminifer-fragmentation-based calcite dissolution proxy (Globorotalia menardii fragmentation index (MFI)) to Mg/Ca, Sr/Ca, and Mg/Sr in several species of deep dwelling planktonic foraminifers. We conducted microfossil and geochemical analyses on the same core top samples taken at different depths on the Ontong Java Plateau to maximize the dissolution signal and minimize the temperature overprint on our data. We also compare elemental ratios from planktonic foraminifer tests to modern bottom water [CO3]2- undersaturation and model-derived estimates of percent calcite dissolved in deep-sea sediments. We find clear linear decreases in Mg/Ca or Mg/Sr in G. menardii and Pulleniatina obliquiloculata with increasing (1) bottom water [CO3]2- undersaturation, (2) percent calcite dissolved in sediments calculated with biogeochemical modeling, (3) MFI, and (4) percent calcite dissolved derived from MFI. These findings lend further support to MFI as a calcite dissolution proxy for deep-sea sediments. In contrast, we find no significant correlation between Sr/Ca and independent dissolution indicators. Our results suggest that Mg/Ca and Mg/Sr from deep dwelling foraminifers could potentially be used as calcite dissolution proxies in combination with independent water temperature estimates. Likewise, establishing the relationship between MFI and dissolution-induced changes in the Mg/Ca of surface-dwelling foraminifers could provide a tool to correct Mg/Ca–derived sea surface temperature reconstructions for calcite dissolution.
    Keywords: DEPTH, sediment/rock; Elevation of event; ERDC; ERDC-089P; ERDC-090G; ERDC-098G; ERDC-109G; ERDC-110G; ERDC-111G; ERDC-114G; ERDC-115G; ERDC-116G; ERDC-118G; ERDC-121G; ERDC-126G; ERDC-127P; ERDC-130P; ERDC-132P; Event label; GC; Globorotalia menardii; Globorotalia menardii, Magnesium/Calcium ratio; Globorotalia tumida; Globorotalia tumida, Magnesium/Calcium ratio; Gravity corer; Latitude of event; Longitude of event; Magnesium/Calcium ratio, standard deviation; Magnesium/Strontium ratio; Magnesium/Strontium ratio, standard deviation; Neogloboquadrina dutertrei; Neogloboquadrina dutertrei, Magnesium/Calcium ratio; PC; Piston corer; Pulleniatina obliquiloculata; Pulleniatina obliquiloculata, Magnesium/Calcium ratio; Strontium/Calcium ratio; Thomas Washington
    Type: Dataset
    Format: text/tab-separated-values, 363 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-05
    Keywords: AMPH-019G; AMPH01AR; AMPH-025G; AMPH-031GV; AMPHITRITE; Argo; AT_II-54_2_01; AT_II-54_2_09; AT_II-54_2_14; AT_II-54_2_23; AT_II-54_2_24; BC; BENTHIFACE; BNFC02MV; BNFC44; Box corer; Core; CORE; DEPTH, sediment/rock; DWBG-144; Eastern Equatorial Pacific; East Pacific; Elevation of event; ERDC; ERDC-089P; ERDC-090G; ERDC-098G; ERDC-109G; ERDC-110G; ERDC-111G; ERDC-114G; ERDC-116G; ERDC-118G; ERDC-121G; ERDC-126G; ERDC-127P; ERDC-130P; ERDC-132P; Event label; FFC; Free fall corer; GC; Gravity corer; GS7202-15; GS7202-16; GS7202-33; KK71-FFC-188; KK71-FFC-205; Latitude of event; Longitude of event; Mass; Melville; MG3; MUC; MultiCorer; Neogloboquadrina dutertrei; OC73-3; OC73-3-024; OC73-4; OC73-4-034; Oceanographer; P6702-1; P6702-35G; P6702-57; P6702-59; P6702-9; Pacific; PC; Piston corer; PLDS-004G; PLDS-1; Pleiades; Pulleniatina obliquiloculata; SCAN; SCAN-094P; South Pacific Ocean; Thomas Washington; TR163-29T; TR163-32T; VNTR01; VNTR01-11GC; VNTR01-12GC; VNTR01-5GC; VNTR01-9GC; W7706; W7706-69; Wecoma; Y69-103M1; Y69-110M1; Y71-03; Y71-03-04; Y71-03-05; Y71-03-11; Y71-03-13; Y71-03-15; Y71-07; Y71-07-35; Y71-07-45; Y71-09; Y71-09-100; Y71-09-104; Y71-09-115; Y71-09-89; Y71-09-92; Y71-09-94; Y71-09-95; Y71-09-96; Y71-09-99; Yaquina
    Type: Dataset
    Format: text/tab-separated-values, 312 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-08
    Keywords: AMPH-019G; AMPH01AR; AMPH-025G; AMPHITRITE; Argo; AT_II-54_2_03; AT_II-54_2_09; AT_II-54_2_23; AT_II-54_2_24; Core; CORE; DEPTH, sediment/rock; Dissolution rate; DWBG-140G; DWBG-143; DWBG-144; Eastern Equatorial Pacific; East Pacific; Elevation of event; ERDC; ERDC-089P; ERDC-090G; ERDC-098G; ERDC-109G; ERDC-110G; ERDC-111G; ERDC-114G; ERDC-115G; ERDC-116G; ERDC-118G; ERDC-121G; ERDC-126G; ERDC-127P; ERDC-130P; ERDC-132P; Event label; FFC; Fragmentation index; Free fall corer; GC; Gravity corer; GS7202-15; GS7202-33; KNR64-3-14; Latitude of event; Longitude of event; MUC; MultiCorer; OC73-1; OC73-1-02; OC73-3; OC73-3-024; OC73-3-10; OC73-3-18; OC73-4; OC73-4-034; Oceanographer; P6702-1; P6702-35G; Pacific; PC; Piston corer; SCAN; SCAN-089G; SCAN-094P; SCAN-095G; South Pacific Ocean; Thomas Washington; TR163-27T; TR163-29T; TR163-32T; VNTR01; VNTR01-11GC; VNTR01-12GC; VNTR01-13GC; VNTR01-5GC; VNTR01-7GC; VNTR01-9GC; Y69-83M1; Y69-86P; Y71-03; Y71-03-06; Y71-03-19; Y71-07; Y71-07-35; Y71-07-45; Y71-09; Y71-09-104; Y71-09-115; Y71-09-92; Y71-09-94; YALOC69; Yaquina; Δ carbonate ion content
    Type: Dataset
    Format: text/tab-separated-values, 168 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mekik, Figen; Francois, Roger; Soon, Maureen (2007): A novel approach to dissolution correction of Mg/Ca-based paleothermometry in the tropical Pacific. Paleoceanography, 22(3), PA3217, https://doi.org/10.1029/2007PA001504
    Publication Date: 2023-11-08
    Description: Mg/Ca in planktonic foraminifers carries two main signals: calcification temperature and postdepositional test dissolution. Shell dissolution thus distorts water temperature reconstructions made with Mg/Ca in foraminifers. This problem could be resolved by quantifying the impact of carbonate dissolution on Mg/Ca with an independent, temperature-insensitive deep-sea calcite dissolution proxy, such as the Globorotalia menardii fragmentation index (MFI). To test the validity of this approach, we measured Mg/Ca in the tests of several planktonic foraminifers and MFI in core tops collected over a wide geographic region of the tropical Pacific and covering a wide range of deep-sea calcite dissolution and seawater temperature. We confirm that Mg/Ca from different species have different susceptibility to temperature and dissolution. Mg/Ca in surface-dwelling Globigerina bulloides is controlled by calcification temperature and is largely unaffected by carbonate dissolution estimated from MFI. In contrast, Mg/Ca in deeper dwelling G. menardii is minimally sensitive to temperature and dominantly affected by dissolution. Mg/Ca in Neogloboquadrina dutertrei and Pulleniatina obliquiloculata are significantly affected by both temperature and dissolution, and MFI can be effectively used to correct temperature estimates from these species for calcite dissolution. Additional variables besides temperature and dissolution appear to control Mg/Ca in Globorotalia tumida, and their identification is a prerequisite for interpreting elemental shell composition in this species. Combining down-core measurements of Mg/Ca in multiple foraminifer species with MFI provides a powerful tool for reconstructing past changes in the upper water column temperature structure in the tropical Pacific.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...