GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Intrastriatal administration of the reversible succinate dehydrogenase inhibitor malonate produces both energy depletion and striatal lesions by a secondary excitotoxic mechanism. To investigate the role of nitric oxide (NO•) in the pathogenesis of the lesions we examined malonate toxicity in mice in which the genes for neuronal nitric oxide synthase (nNOS) or endothelial nitric oxide synthase (eNOS) were disrupted. Malonate striatal lesions were significantly attenuated in the nNOS mutant mice, and they were significantly increased in the eNOS mutant mice. Malonate-induced increases in levels of 2,3- and 2,5-dihydroxybenzoic acid/salicylate, markers of hydroxyl radical generation, were significantly attenuated in the nNOS knockout mice. Malonate-induced increases in 3-nitrotyrosine, a marker for peroxynitrite-mediated damage, were blocked in the nNOS mice, whereas a significant increase occurred in the eNOS mice. These findings show that NO• produced by nNOS results in generation of peroxynitrite, which plays a role in malonate neurotoxicity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Several studies suggest that nitric oxide (NO•) contributes to cell death following activation of NMDA receptors in cultured cortical, hippocampal, and striatal neurons. In the present study we investigated whether 7-nitroindazole (7-NI), a specific neuronal nitric oxide synthase inhibitor, can block dopaminergic neurotoxicity seen in mice after systemic administration of MPTP. 7-NI dose-dependently protected against MPTP-induced dopamine depletions using two different dosing regimens of MPTP that produced varying degrees of dopamine depletion. At 50 mg/kg of 7-NI there was almost complete protection in both paradigms. Similar effects were seen with MPTP-induced depletions of both homovanillic acid and 3,4-dihydroxyphenylacetic acid. 7-NI had no significant effect on dopamine transport in vitro and on monoamine oxidase B activity both in vitro and in vivo. One mechanism by which NO• is thought to mediate its toxicity is by interacting with superoxide radical to form peroxynitrite (ONOO−), which then may nitrate tyrosine residues. Consistent with this hypothesis, MPTP neurotoxicity in mice resulted in a significant increase in the concentration of 3-nitrotyrosine, which was attenuated by treatment with 7-NI. Our results suggest that NO• plays a role in MPTP neurotoxicity, as well as novel therapeutic strategies for Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The mitochondrial toxin 3-nitropropionic acid (3-NP) produces selective striatal lesions in both experimental animals and humans. The pathogenesis of the lesions involves secondary excitotoxicity that may then lead to free radical generation. To test this further we examined the effects of 3-NP in both transgenic (Tg) mice that carry the complete sequence for the human copper/zinc superoxide dismutase (SOD) gene as well as non-Tg littermate controls. The Tg-SOD mice showed a pronounced attenuation of Nissl-stained striatal lesions compared with non-Tg mice. Systemic administration of 3-NP resulted in production of hydroxyl free radicals as assessed by the conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid. This production was attenuated significantly in Tg-SOD mice. In a similar way, 3-NP produced significant increases in 3-nitrotyrosine/tyrosine, a marker for peroxynitrite-mediated damage, which were significantly attenuated in Tg-SOD mice. These results support that oxygen free radicals and peroxynitrite play an important role in the pathogenesis of 3-NP neurotoxicity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Impairment of energy production may play a role in the pathogenesis of Huntington's disease (HD). It was recently shown that huntingtin can bind to and possibly inhibit the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found that intrastriatal administration of the GAPDH inhibitor iodoacetate produces striatal lesions that are significantly attenuated by removal of the corticostriatal glutamatergic input, consistent with an excitotoxic mechanism. The lesions are accompanied by increased production of hydroxyl free radicals as assessed by conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid. In vivo magnetic resonance imaging showed lesions on T2-weighted scans, but there was only a small increase in lactate content. These results show that inhibition of GAPDH produces striatal lesions in vivo and suggest that inhibition of GAPDH could contribute to neuronal degeneration in HD.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Mitochondria are particularly vulnerable to oxidative stress, and mitochondrial swelling and vacuolization are among the earliest pathologic features found in two strains of transgenic amyotrophic lateral sclerosis (ALS) mice with SOD1 mutations. Mice with the G93A human SOD1 mutation have altered ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] 1–Methyl–4–phenyl–1,2/3,6–tetrahydropyridine (MPTP) produces clinical, biochemical and neuropathologic changes reminiscent of those which occur in idiopathic Parkinson's disease. 7–Nitroindazole (7–NI) is a relatively selective inhibitor of the neuronal ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4919
    Keywords: nitric oxide ; MPTP ; 3-nitropropionic acid ; malonate ; 3-nitrotyrosine ; free radicals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Excitotoxicity, mitochondrial dysfunction and free radical induced oxidative damage have been implicated in the pathogenesis of several different neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease. Much of the interest in the association of neurodegeneration with mitochondrial dysfunction and oxidative damage emerged from animal studies using mitochondrial toxins. Within mitochondria 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), acts to inhibit NADH-coenzyme Q reductase (complex I) of the electron transport chain. MPTP produces Parkinsonism in humans, primates, and mice. Similarly, lesions produced by the reversible inhibitor of succinate dehydrogenase (complex II), malonate, and the irreversible inhibitor, 3-nitropropionic acid (3-NP), closely resemble the histologic, neurochemical and clinical features of HD in both rats and non-human primates. The interruption of oxidative phosphorylation results in decreased levels of ATP. A consequence is partial neuronal depolarization and secondary activation of voltage-dependent NMDA receptors, which may result in excitotoxic neuronal cell death (secondary excitotoxicity). The increase in intracellular Ca2+ concentration leads to an actiation of Ca2+ dependent enzymes, including the constitutive neuronal nitric oxide synthase (cnNOS) which produces NO·. NO· may react with the superoxide anion to form peroxynitrite. We show that systemic administration of 7-nitroindazole (7-NI), a relatively specific inhibitor of cnNOS in vivo. attenuates lesions produced by striatal malonate injections or systemic treatment with 3-NP or MPTP. Furthermore 7-NI attenuated increases in lactate production and hydroxyl radical and 3-nitrotyrosine generation in vivo, which may be a consequence of peroxynitrite formation. Our results suggest that neuronal nitric oxide synthase inhibitors may be useful in the treatment of neurologic diseases in which excitotoxic mechanisms play a role. (Mol Cell Biochem 174: 193–197, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...