GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 404 (2000), S. 180-183 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Several of the most ambitious theories in ecology describe food webs that document the structure of strong and weak trophic links that is responsible for ecological dynamics among diverse assemblages of species. Early mechanism-based theory asserted that food webs have little omnivory and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 428 (2004), S. 167-171 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-09
    Description: Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AAAI Press
    In:  In: Proceedings of The Association for the Advancement of Artificial Intelligence. AAAI Press, Palo Alto, Calif., USA, pp. 326-334.
    Publication Date: 2012-11-29
    Description: Understanding ecological complexity has stymied scientists for decades. Recent elucidation of the famously coined "devious strategies for stability in enduring natural systems" has opened up a new field of computational analyses of complex ecological networks where the nonlinear dynamics of many interacting species can be more realistically mod-eled and understood. Here, we describe the first extension of this field to include coupled human-natural systems. This extension elucidates new strategies for sustaining extraction of biomass (e.g., fish, forests, fiber) from ecosystems that account for ecological complexity and can pursue multiple goals such as maximizing economic profit, employment and carbon sequestration by ecosystems. Our more realistic modeling of ecosystems helps explain why simpler "maxi-mum sustainable yield" bioeconomic models underpinning much natural resource extraction policy leads to less profit, biomass, and biodiversity than predicted by those simple models. Current research directions of this integrated natu-ral and social science include applying artificial intelligence, cloud computing, and multiplayer online games.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...