GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 8(2007), 10, Seite 1-25, 1525-2027
    In: volume:8
    In: year:2007
    In: number:10
    In: pages:1-25
    Type of Medium: Article
    ISSN: 1525-2027
    Language: English
    Note: Q1000005 doi:1029/2007GC001639
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 9 (1997), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Sierra Nevada core, located in the Betic hinterland, features a N-S large-scale open antiform with a central relatively uplifted highly extended domain placed between two less extended domains (in the east and in the west) dipping eastwards and westwards, respectively. The core-bounding detachment system formed during the Serravallian (15–11 Ma) in an episode of ENE-WSW extension. The ESCI-Beticas 2 deep seismic reflection profile, a transect through the core, shows a highly reflective deep crust overlying a subhorizontal Moho, and a fairly transparent upper crust and upper mantle. The lack of Moho relief beneath this area, with differential values for supra-crustal thinning, suggests a mechanism of intracrustal isostatic compensation. Surface geology data together with seismic imaging indicate intracrustal flow and upward doming as a response to footwall unloading accompanying the middle Miocene supracrustal extension. A prominent mid-crustal reflector (MCR) is deemed to represent a decoupling zone between the upper and the deep crust. Subsequent N-S shortening and associated folding occurred in the late Miocene. The interference pattern of this folding over the middle Miocene core produced the current E–W dome-shaped tectonic windows where the deepest complex of the Betic hinterland crops out.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1437-3262
    Keywords: Betic chain ; Shear zones ; Quartz veins ; C-axis fabrics ; Fluid inclusions ; Extensional tectonics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Synkinematic quartz veins are ubiquitous in the shear zone separating the Veleta unit from the Calar Alto unit in the internal part of the Betic Cordilleras. They have been studied with respect to quartz c-axis fabrics, microstructures and fluid inclusions. Veins were probably generated during syn-metamorphic stacking of the units at P = 500 − 600 MPa and T = 400 − 500°C. Quartz displays two groups of microstructures in the shear zone: (1) older coarse-grained mosaics (CGM) resulting from exaggerated grain growth; and (2) younger fine-grained mosaics (FGM) developed at the expense of the former. The fine-grained mosaics show polygonal granoblastic and elongate mosaic microstructures in general, with ribbon microstructures often found near the boundary of the units. Fluids contained in secondary inclusions vary from high salinity brines to different types of CO2—brine mixtures and low density CO2 fluids. Differences in composition and P-T trapping conditions are indicated for the different types of inclusions. Some fluid inclusions are older than the FGM, whereas others are younger, thus constraining the P- T conditions at which the two microstructural events took place. Fluid inclusion evidence suggests conditions of Pfluid 〉 170 MPa and T ≧ 370−430°C for the CGM and Pfluid ≧ 20−80 MPa and T 〉 340°C for the FGM. The quartz c-axis fabrics dealt with here correspond to the second recrystallization event, as little evidence of older fabrics is preserved in the shear zone. C-axis patterns vary across the shear zone from slightly asymmetrical type I crossed girdles in the hanging wall and footwall to more asymmetrical crossed girdles at the boundary of the units. This indicates a correlative increase in the magnitude of the heterogeneous shear strain in the same direction. Most of the deformation is concentrated at the top of the Veleta unit. The sense of movement is top to the west, in agreement with other kinematic markers. The quartz c-axis fabrics resulted from dynamic recrystallization during simple shear. The retrograde P-T path inferred from fluid inclusion analysis, along with other geological and geochronological evidence, indicates that this deformation is coeval with a reduction in the crustal overburden. Geochronological and stratigraphic data show that the proposed Dos Picos extensional detachment, separating the Calar Alto and Veleta units, took place during the early Miocene, synchronous with the intense thinning of the Nevado-Filábride Complex and of the whole continental crust underlying the Alborán Basin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Whether or not there are extensional detachment faults in the Alboran basement can be tested directly because a part of the Alboran Basin is now emerged. These detachments, related to crustal thinning beneath the Alboran Basin, occurred from the Aquitanian to Tortonian. The resulting extensional geometries can be described in general terms. During the Serravalian a considerable southwest extension of the basin took place, accompanied by south-southeast extension in the northern Gibraltar Arc. Other detachments affected by Serravalian extension can be found. The spreading of the Alboran was nearly coeval with roughly westward migration of the Gibraltar mountain front.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-16
    Description: We have analysed the thermobarometric equilibrium conditions reached during local equilibria among phengite + chlorite + quartz + water ± chloritoid ± garnet assemblages found in metapelites of the Ragua unit, the structurally-lowest tectonic unit outcropping in the Betics hinterland (southern Spain). Porphyroblast- deformation relationships show that lenticular domains preserved within the main foliation in the metapelites grew during a HP/LT prograde metamorphic event with thermal conditions of 320-450 °C and 12-14 kbar pressure. Hence, the Ragua unit subducted in a continental accretionary-wedge context, undergoing a tectonic evolution parallel to the one followed by the two other overlying Nevado-Filabride units.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-14
    Description: The basement of the Vera and Huercal Overa basins (southeastem Betics) is fonned by rocks ofthe Alboran Crustal Domain; a terrain which collided with the South-Iberian and Maghrebian continentalmargins in the Lower Miocene, resulting in the fonnation of the Gibraltar Are mountain chain. The Alpuja1Tide complex which occupies an intermediate structural position within the Alboran Domain, above the Nevado-Filabride and below the Malaguide complexes, includes at least three tectonic units in the southeastern Betics. From bottom to top in the slTuctural sequence, these units are Almagro, Almanzora and Variegato. The metapelitic rocks of these units show significative differences in their tectonic fabrics and in their P-T metamorphic paths. The lower Almagro unit underwent low-P/low-T metamorphism (300 oc and 3-4 kbar) and its metapelites are slates with no differentiated metamorphic fabric, which show two sets of spaced axial-plane cleavages. The intennediate Almanzora unit has two differentiated metamorphic fabrics. The oldest foliation (S,) preserved in quartz-rich domains of a crenulation cleavage (S ce) grew during high-P/low-T metamorphism (between 300 °C/12 kbar and 350 oC/6 kbar). The Scc cleavage deyeloped after an isobaric heating to 475 oc at 5 kbar and registers an initial isothennal decompression to 475 oc at 3 kbar followed by cooling to 300 oc at 2 kbar. A brittle spaced cleavage axial plane to N-vergent asymmetric folM cuts the S ce fabtic. At the top ofthe Alpujarride tectonic pile the Variegato unit, includes up to tlu·ee imbrications formed from top to bottom by gamet schists, fine"grained schists and Triassic carbonates. The main Scc foliation in the gamet schists grew during a nearly isothennal decompression between 500 oc at 8 kbar and 525 oc at 2 kbar. In the Variegato dark schists, the spaced crenulation cleavage associated to Nvergent folds is defined by muscovite and chlorite lepidoblasts and is overprinted by the growth of andalousite porphyroblasts. This assemblage equilibrated at 450-460 oc at 2 kbar. The Variegato fine-grained schists include a high-P/low-T Mg-carpholite-bearing assemblage, within pre-Scc quartz veins equilibrated at 8-10 kbar and approximately 400 °C. Furthermore, a chlorite + phengite + quartz assemblage defining the se relic foliation in lenticular domains of the scc cleavage shows local equilibria at 11 to 9 kbar at 400 °C. The superposition ofthese units was related with N-directed compressional brittle-ductile shear zones and associated N-vergent asymmetric folds, which were active at a late stage of the metamorphic evolution after coaxial ductile flattening of the Variegato and Almanzora units. The thrust pile that resulted from this late compressional event was later thinned by two consecutive brittle extensional systems with northward and southwestward tectonic transport. Final! y, these metamorphic rocks were exhumed to the surface in the core of E-W oriented anticlinal ridges, which developed during the Upper Neogene and the Quaternary. Folding and strike-slip faulting of the Miocene Alboran basin produced the present basin and range morphology of the southeastern Betics, which is characterised by the formation of isolated sedimentary basins in the synclines.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 (Q1000005).
    Publication Date: 2018-03-01
    Description: Multichannel seismic reflection images across the transition between the east Alborán and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alborán basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alborán and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alborán basin was coeval with collision of the Alborán domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...