GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-22
    Description: Author(s): A. Kreyssig, M. G. Kim, J. W. Kim, D. K. Pratt, S. M. Sauerbrei, S. D. March, G. R. Tesdall, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, and A. I. Goldman [Phys. Rev. B 84, 220408] Published Wed Dec 21, 2011
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-10
    Description: Author(s): M. A. Garcia-March, G. Mazzarella, L. Dell'Anna, B. Juliá-Díaz, L. Salasnich, and A. Polls We consider an ultracold bosonic binary mixture confined in a quasi-one-dimensional double-well trap. The two bosonic components are assumed to be two hyperfine internal states of the same atom. We suppose that these two components are spin-orbit coupled to each other. We employ the two-mode approxi... [Phys. Rev. A 89, 063607] Published Fri Jun 06, 2014
    Keywords: Matter waves and collective properties of cold atoms and molecules
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 28 (1936), S. 595-598 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Tetrahedron Letters 22 (1981), S. 1555-1556 
    ISSN: 0040-4039
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 16 (1995), S. 279-286 
    ISSN: 1573-5087
    Keywords: growth regulator treatment ; polyamines ; Prunus avium ; zygotic embryos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A study of the polyamine profile was carried out during zygotic embryo development in Prunus avium. Zygotic embryos were collected from 2 donor trees and sorted into 3 size classes: C1 [2.5 to 3.5 mm]; C2 [3.6 to 4.5 mm] and C3 [5.5 to 7 mm]. Evolution of the various polyamines was similar for the two donor trees. Changes in the relative amount of the various free polyamines were observed during zygotic embryo development. Agmatine and spermine levels increased from C1 to C3. Spermidine, the predominant polyamine, showed a two-fold decrease in C3 compared with C1 and C2; the evolution of putrescine was opposed, showing an increase in the last developmental stage. The putrescine/spermidine ratio could be a marker for these 3 developmental stages with a higher ratio in C3 compared with C1 and C2. Polyamine changes in cotyledons from class C1 were investigated during in vitro culture. A 10-day induction on a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin caused a strong decline in free spermidine levels and a dramatic increase in free putrescine. The formation of conjugated putrescine occurred simultaneously, and twenty days after removal of growth regulators, the various polyamine contents were still at the same level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-16
    Description: The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-04
    Description: The reestimates of thermospheric winds from the Gravity field and steady‐state Ocean Circulation Explorer (GOCE) accelerometer measurements were released in April 2019. In this study, we compared the new‐released GOCE crosswind (cross‐track wind) data with the horizontal winds measured by four Fabry‐Perot interferometers (FPIs) located at low and middle latitudes. Our results show that during magnetically quiet periods the GOCE crosswind on the dusk side has typical seasonal variations with largest speed around December and lowest speed around June, which is consistent with the ground‐FPI measurements. The correlation coefficients between the four stations and GOCE crosswind data all reach around 0.6. However, the magnitude of the GOCE crosswind is somehow larger than the FPIs wind, with average ratios between 1.37‐1.69. During geomagnetically active periods, the GOCE and FPI derived winds have a lower agreement, with average ratios of 0.85 for the Asian station (XL) and about 2.15 for the other three American stations (PAR, Arecibo and CAR). The discrepancies of absolute wind values from the GOCE accelerometer and ground‐based FPIs should be mainly due to the different measurement principles of the two techniques. Our results also suggested that the wind measurements from the XL FPI located at the Asian sector has the same quality with the FPIs at the American sector, although with lower time resolution.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-09
    Description: In the past twenty years, gravimetry missions have demonstrated a unique capability to monitor not only major climate-related changes of the Earth directly from space - quantifying the melt of large glaciers and ice sheets, global sea level rise, continental draught, major flooding events, and also effects of large earthquakes and tsunamis. In order to respond to the increasing demand of the user community for sustained mass change observations at higher spatial and temporal resolution, ESA and NASA are at the moment coordinating their activities and are harmonizing their cooperation scenarios in an implementation framework, called MAGIC (MAss change and Geosciences International Constellation). In future post -MAGIC mission, a combination of classical sensors with CAI, or at a later stage a full quantum sensor will open to many applications and user needs with respect to water management and hazard prevention among others Several studies related to these new sensor concepts were initiated at ESA, mainly focusing on technology development for different instrument configurations (gravity gradiometers and satellite-to-satellite ranging systems) and including validation activities, e.g. two successful airborne surveys with a CAI gravimeter. A new study has been initiated in 2022, the Quantum Space Gravimetry for Earth Mass Transport (QSG4EMT) with the focus on QSG mission architectures that monitor Earth's mass transport processes and development of QSG user requirements. A technology roadmap will also be outlined to pave the way to develop a Quantum Mission for Climate in continuity and enhancement of MAGIC.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-30
    Description: ESA and NASA are currently intensifying their long-term efforts on a collaborative implementation of a next generation mass change and gravity monitoring satellite mission under the umbrella of the NASA-ESA Joint Programme Planning Group sub-group 1. MAss-change and Geosciences International Constellation (MAGIC) is the joint NASA/ESA constellation concept based on NASA’s MCDO and ESA’s NGGM studies. The main objective of MAGIC is to extend the mass transport time series from previous gravity missions such as GRACE and GRACE-Follow on with significantly enhanced accuracy, spatial and temporal resolutions and to demonstrate the operational capabilities of MAGIC. The concept is based on a joint ESA/NASA Mission Requirements Document (MRD) which summarizes the goal requirements of the global scientific community (including requirements from the IGWSG report, IUGG, MCDO, etc.). The first pair of the MAGIC Constellation will be implemented via a NASA/DLR fast-paced cooperation to ensure continuity of observations of GRACE-Follow On. The second pair will be implemented by ESA with some potential NASA in-kind contributions for the Laser Tracking Instrument. This paper will provide a status overview of MAGIC and address the novel science and applications enabled by the planned constellation for the fields of hydrology, cryosphere, oceanography, geodesy, climate change and solid Earth. It will also demonstrate the significant added value of MAGIC constellation for unravelling and understanding mass transport and mass change processes in the Earth system.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-18
    Description: he joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) mission has the objective to extend time series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth's gravity field carries information on mass-change induced by water cycle, climate change, and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. The MAGIC mission will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR--led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA--led pair (P2) is expected to be in an inclined orbit of 65--70 degrees at approximately 400 km altitude. The ESA--led pair P2 Next Generation Gravity Mission (NGGM) shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. sub--weekly) resolution, shorter latency, and higher accuracy than GRACE and GRACE-FO. This will pave the way to new science applications and operational services. The performances of different MAGIC mission scenarios for different application areas in the field of geosciences were analysed in the frame of the initial ESA Science Support activities for MAGIC. The data sets provided here are the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal that were used for these analyses. The .gfc files in the folders monthly (31-day solutions) and weekly (7-day solutions) contain the estimated (HIS) coefficients (Cnm, Snm) as well as the formal errors (SigCnm, SigSnm) of the different MAGIC scenarios. In order to compute the coefficient errors, the reference/true HIS coefficients contained in the folder HIS_reference_fields need to be subtracted from the estimated HIS coefficients. The data sets provided here comprise the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal (based on Dobslaw et al. 2014; 2015) that were used for the above analyses.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...