GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Impaired function of the brain vasculature might contribute to the development of HIV-associated dementia. For example, injury or dysfunction of brain microvascular endothelial cells (BMEC) can lead to the breakdown of the blood–brain barrier (BBB) and thus allow accelerated entry of the HIV-1 virus into the CNS. Mechanisms of injury to BMEC during HIV-1 infection are not fully understood, but the viral gene product Tat may be, at least in part, responsible for this effect. Tat can be released from infected perivascular macrophages in the CNS of patients with AIDS, and thus BMEC can be directly exposed to high concentrations of this protein. To study oxidative and inflammatory mechanisms associated with Tat-induced toxicity, BMEC were exposed to increasing doses of Tat1−72, and markers of oxidative stress, as well as redox-responsive transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), were measured. Tat1−72 treatment markedly increased cellular oxidative stress, decreased levels of intracellular glutathione and activated DNA binding activity and transactivation of NF-κB and AP-1. To determine if Tat1−72 can stimulate inflammatory responses in brain endothelium in vivo, expression of monocyte chemoattractant protein-1 (MCP-1), an NF-κB and AP-1-dependent chemokine, was studied in brain tissue in mice injected with Tat1−72 into the right hippocampus. Tat1−72 markedly elevated the MCP-1 mRNA levels in brain tissue. In addition, a double immunohistochemistry study revealed that MCP-1 protein was markedly overexpressed on brain vascular endothelium. These data indicate that Tat1−72 can induce redox-related inflammatory responses both in in vitro and in vivo environments. These changes can directly lead to disruption of the BBB. Thus, Tat can play an important role in the development of detrimental vascular changes in the brains of HIV-infected patients.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 μM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-κB (NF-κB), and cell viability. AA treatment increased cell intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 μM AA. In addition, AA treatment activated NF-κB and decreased levels of the inhibitory subunit, IκB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Primary spinal cord trauma can trigger a cascade of secondary processes leading to delayed and amplified injury to spinal cord neurons. Release of fatty acids, in particular arachidonic acid, from cell membranes is believed to contribute significantly to these events. Mechanisms of fatty acid-induced injury to spinal cord neurons may include lipid peroxidation. One of the major biologically active products of arachidonic acid peroxidation is 4-hydroxynonenal (HNE). The levels of HNE-protein conjugates in cultured spinal cord neurons increased in a dose-dependent manner after a 24-h exposure to arachidonic acid. To study cellular effects of HNE, spinal cord neurons were treated with different doses of HNE, and cellular oxidative stress, intracellular calcium, and cell viability were determined. A 3-h exposure to 10 μM HNE caused ∼80% increase in oxidative stress and 30% elevation of intracellular calcium. Exposure of spinal cord neurons to HNE caused a dramatic loss of cellular viability, indicated by a dose-dependent decrease in MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] conversion. The cytotoxic effect of HNE was diminished by pretreating neurons with ebselen or N-acetylcysteine. These data support the hypothesis that formation of HNE may be responsible, at least in part, for the cytotoxic effects of membrane-released arachidonic acid to spinal cord neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Arachidonic acid (AA) plays an important role as a signaling factor in the CNS. Therefore, exposure to AA may affect cholinergic neurons in the spinal cord. To test this hypothesis, mRNA expression and activity of choline acetyltransferase (ChAT) was measured in cultured spinal cord neurons treated with increasing concentrations (0.1–10 µm) of AA. Exposure to AA increased mRNA levels and activity of ChAT in dose- and time-dependent manners. The most marked effect of AA on ChAT expression was observed in spinal cord neurons treated with 10 µm AA for 1 h. To study the mechanisms associated with these effects, ChAT mRNA levels and activity were measured in cultured spinal cord neurons exposed to AA and inhibitors of protein kinase C (PKC), such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dichloride (H-7) and chelerythrine. Inhibition of PKC completely prevented an AA-induced increase in ChAT expression. In addition, exposure of spinal cord neurons to phorbol-12-myristate-13-acetate (PMA), an activator of PKC, mimicked AA-induced stimulation of ChAT activity. The AA-mediated increase in ChAT mRNA levels and activity was also prevented by treatments with EGTA, indicating the role of calcium metabolism in induction of this enzyme. In contrast, treatments with 7-nitroindazole (7-NI, a specific inhibitor of neuronal nitric oxide synthase), sodium vanadate (NaV, a non-specific inhibitor of phosphatases), and N-acetyl-cysteine (NAC, an antioxidant) had no effect on AA-induced changes in ChAT activity. The protein synthesis inhibitor cycloheximide completely blocked AA-mediated increase in ChAT activity. These results indicate that the AA-evoked increase in ChAT activity in spinal cord neurons is mediated by PKC, presumably at the transcriptional level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European archives of psychiatry and clinical neuroscience 245 (1995), S. 179-182 
    ISSN: 1433-8491
    Keywords: Neuroleptic treatment ; Rats ; Phospholipase A2 ; Brain plasma membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of neuroleptics on phospholipase A2 (PLA2) activity in rat brain plasma membranes was studied. Chlorpromazine (10 mg/kg), fluphenazine (5 mg/kg), thioridazine (5 mg/kg), trifluoperazine (5 mg/kg), haloperidol (2 mg/kg), and sulpiride (100 mg/kg) were administered to rats intraperitoneally as a single dose or long-term treatment (4 weeks). The PLA2 activity was determined 24, 48, and 72 h after the last injection of a drug. The enzyme activity was decreased after a single or 4-week administration of chlorpromazine, trifluoperazine, haloperidol, and sulpiride. Fluphenazine and thioridazine caused an increase of PLA2 activity in rat brain both after a single dose and long-term administration. For the first time it was shown that neuroleptics cannot only inhibit but also increase, PLA2 activity. Elucidation of this fact requires further studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 14 (1993), S. 287-297 
    ISSN: 0197-8462
    Keywords: irritability ; open field ; locomotor activity ; static ; extremely low frequency ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Male rats and pregnant and nonpregnant female rats of the Wistar strain were sham-exposed or exposed to static (0.49 T) or to extremely low frequency (50 Hz) magnetic fields (0.018 T) 2 h per day for 20 consecutive days. Measures of irritability, exploratory activity, and locomotion were made in that order before and after the 4th, 10th, and 17th 2-h exposures. A reliable decrease in the irritability of rats after repeated exposure to a static or undulating field was found. No significant effects of treatment conditions on open-field behavior and locomotor activity were observed. Pregnancy had no influence on the behavioral end points. These results indicate that irritability of rats may be used as a simple behavioral indicant of mammalian sensitivity to magnetic fields. © 1993 Wiley-Liss. Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...