GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Keywords: recovery ; acid lake ; smelter ; copper ; nickel ; sulphate ; Rhizosolenia ; Cosmarium ; Bosmina ; Chydorus ; Chaoborus ; rotifers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Studies are reported on two small lakes at Sudbury, Ontario located close to a nickel-copper smelter which closed in 1972. At that stage, Baby Lake had a pH of 4.0–4.2 while the adjacent Alice Lake had a pH 5.9–6.3. Both lakes were almost entirely devoid of algae and had neither Zooplankton nor fish. Soon after the closure of the smelter, with its large airborne volume of sulphur dioxide and of copper and nickel containing particulates, the chemistry of the lakes began to change. By 1985, Baby Lake had changed from pH 4.0 to 6.8 and is now at pH 7.2. The pH of Alice Lake increased from a low of 5.9 in the early 1970s to 6.9–7.4 in the mid 1980s and is now at 7.3. Copper and nickel concentrations also decreased in both lakes during this period. The first biota found in the lakes in the post-smelter stage in the early 1980s were benthic red chironomids, planktonic rotifers, and a limited number of phytoplankton species, of which Rhizosolenia was the most common. By the 1990s, 13 phytoplankton species were present in each lake, with a substantial Zooplankton fauna (14 species) of rotifers, copepods, and cladocerans. There are now numerous insect larvae in the sediment and some small fish in both lakes. The biological recovery, which followed substantial reductions in acidity and in soluble nickel and copper concentrations in the waters, is a slower process than chemical recovery and is initially characterized by the dominance of a few species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3In: Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F. (eds.) Wetlands as natural resource. Volume 2. Wetlands: functioning, biodiversity, conservation and restoration. Ecological Studies, Springer Verlag, Berlin
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-08
    Description: Recent empirical and statistical evidence suggest that propagule pressure (i.e., number of individuals introduced per event, and the number and frequency of events) and colonization pressure (i.e., number of species released per event, and the number and frequency of events) are of vital importance to invasion success. To explore possible changes in propagule and colonization pressure during the transport stage of the invasion process, we examine abundance and species richness of virus-like particles, bacteria, diatoms, dinoflagellates, and invertebrates transported in commercial ships—a leading vector for global spread of aquatic nonindigenous species. We collected 154 ballast water samples from ships that had performed or were exempt from ballast water exchange (BWE) prior to arrival at Pacific and Atlantic ports in Canada and Laurentian Great Lakes ports. We found that abundance and species richness varied across taxa and regions, with ships arriving to the Atlantic region carrying the highest abundance of taxa. The highest species richness of invertebrates and diatoms was recorded from ships arriving to the Pacific, whereas the richest communities of dinoflagellates occurred in the Atlantic region. We also found that BWE had no effect on abundance or species richness of most taxa (dinoflagellates, diatoms, bacteria, and virus-like particles), whereas the effect on abundance of invertebrates was not clear. Finally, longer voyages resulted in lower abundance of all taxa except dinoflagellates, and lower species richness of diatoms. Paradoxically, the elevated abundance and species richness of dinoflagellates following BWE suggest that this group could have enhanced invasion potential when ships manage ballast water by exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Biology, 18 (3). pp. 209-215.
    Publication Date: 2015-01-15
    Description: To accurately assess community composition of invertebrates, both active and dormant life stages should be considered. Dormant stages are typically produced as a strategy to overcome inhospitable environmental conditions and can also facilitate species dispersal. While they often sink and accumulate in sediment of natural habitats forming ‘egg banks,’ dormant stages are also found in the sediments accumulated in ships’ ballast tanks. Recent studies have used 2 different methods to separate dormant stages from ballast sediment to assess invasion risk associated with ballast tanks: the colloidal silica sol Ludox HS 40 and sugar flotation (i.e. the Onbé-Marcus method). It has been assumed that the Ludox HS 40 method is most effective for separation but reduces dormant stage viability whereas sugar flotation has lower separation efficacy but higher resulting viability. We conducted a comparative assessment of the 2 methods by separating dormant stages from 160 ballast sediments and examining resulting abundance counts, hatching results, DNA extractions and PCR amplifications. We found no difference in the results between the methods. The financial cost of sugar flotation is lower than that of Ludox HS 40, and costs can be further reduced by using only 1 method instead of both due to lower labour costs, particularly for a large number of samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-05
    Description: Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-01
    Description: Recent studies have recognized the importance of propagule pressure (number of individuals) and colonization pressure (number of species) for explaining establishment success of nonindigenous species. However, the International Ballast Water Management Convention, when ratified, will require ships to satisfy a numeric discharge standard that focuses only on cumulative propagule pressure of all individuals released. Because of practical constraints, the standard does not differentiate between discharges of single vs. multiple species. The assemblage-based approach, which uses rank-abundance gradients to quantify and manage introduction risk, may compensate for this limitation (e.g., even gradient [relatively consistent propagule pressures among n transported species] or uneven gradient [uneven propagule pressures among n transported species]). Here we explore species abundance distributions of zooplankton during transportation in ballast water to assess variability in the structure of assemblages, with implications for the potential development of an assemblage-based management model. Specifically, we explored species abundance distributions for voyages that lasted 〈 24 h, those from 24 to 48 h, and those from 48 to 72 h (i.e., three time scales). Species abundance distributions within and across transit time scales were highly variable. As transport time increased, we observed a shift from uneven to even rank-abundance gradients. Owing to variation in assemblage structure, the number of organisms necessary to quantify colonization pressure exhibited similarly strong variation within and across time scales. Our study indicates that assemblage-based approaches to estimate introduction risk are warranted, yet the variation inherent in transported assemblages will induce substantial uncertainty within management models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  ICES Journal of Marine Science, 71 (7). pp. 1876-1884.
    Publication Date: 2020-07-29
    Description: Species richness and abundance are two commonly measured parameters used to characterize invasion risk associated with transport vectors, especially those capable of transferring large species assemblages. Understanding the relationship between these two variables can further improve our ability to predict future invasions by identifying conditions where high-risk (i.e. species-rich or high abundance or both) and low-risk (i.e. species-poor and low abundance) introduction events are expected. While ballast water is one of the best characterized transport vectors of aquatic non-indigenous species, very few studies have assessed its magnitude at high latitudes. We assessed the arrival potential of zooplankton via ballast water in the Canadian Arctic by examining species richness, total abundance, and the relationship between the two parameters for zooplankton in ships from Europe destined for the Arctic, in comparison with the same parameters for ships bound for Atlantic Canada and the Great Lakes. In addition, we examined whether species richness and/or total abundance were influenced by temperature change and/or ballast water age for each shipping route. We found that species richness and total abundance for Arctic and Great Lakes ships were significantly lower than those for Atlantic ships. Differences in species richness and total abundance for ships utilizing different shipping routes were mostly related to ballast water age. A significant species richness–total abundance relationship for Arctic and Great Lakes ships suggests that these parameters decreased proportionately as ballast water aged. In contrast, the absence of such a relationship for Atlantic ships suggests that decreases in total abundance were accompanied by little to no reduction in species richness. Collectively, our results indicate that the arrival potential of zooplankton in ballast water of Arctic ships may be lower than or similar to that of Atlantic and Great Lakes ships, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Invited talk] In: 13. International Congress on Invertebrate Reproduction and Development ICIRD 2013, 14.-19.07.2013, Detroit, Mich., USA .
    Publication Date: 2015-09-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: CAISN 2013 Annual General Meeting & Conference, 02.-03.05.2013, Kananaskis, Alberta, Canada .
    Publication Date: 2015-09-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...