GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2022-01-31
    Description: The developing asymmetry of rifting and continental breakup to form rifted margins has been much debated, as has the formation, mechanics and role of extensional detachments. Bespoke 3D seismic reflection data across the Galicia margin, west of Spain, image in unprecedented detail an asymmetric detachment (the S reflector). Mapping S in 3D reveals its surface is corrugated, proving that the overlying crustal blocks slipped on S surface during the rifting. Crucially, the 3D data show that the corrugations on S perfectly match the corrugations observed on the present-day block-bounding faults, demonstrating that S is a composite surface, comprising the juxtaposed rotated roots of block-bounding faults as in a rolling hinge system with each new fault propagation moving rifting oceanward; changes in the orientation of the corrugations record the same oceanward migration. However, in contrast to previous rolling hinge models, the slip of the crustal blocks on S occurred at angles as low as ∼20°, requiring that S was unusually weak, consistent with the hydration of the underlying mantle by seawater ingress following the embrittlement of the entire crust. As the crust only becomes entirely brittle once thinned to ∼10 km, the asymmetric S detachment and the hyper-extension of the continental crust only developed late in the rifting process, which is consistent with the observed development of asymmetry between conjugate magma poor margin pairs. The 3D volume allows analysis of the heaves and along strike architecture of the normal faults, whose planes laterally die or spatially link together, implying overlaps in faults activity during hyper-extension. Our results thus reveal for the first time the 3D mechanics and timing of detachment faulting growth, the relationship between the detachment and the network of block-bounding faults above it and the key processes controlling the asymmetrical development of conjugate rifted margins. Highlights • The 3D seismic data provide unprecedented details of the mechanisms of breakup. • S detachment is corrugated and made of root zones of successive normal faults. • S rooted steeply but continued to slip at low-angle (down to 20°). • Extensional faulting migrated oceanwards by sets of faults active concurrently. • The asymmetric detachment developed as the crust became entirely brittle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: High-resolution velocity models developed using full-waveform inversion (FWI) can image fine details of the nature and structure of the subsurface. Using a 3D FWI velocity model of hyper-thinned crust at the Deep Galicia Margin (DGM) west of Iberia, we constrain the nature of the crust at this margin by comparing its velocity structure with those in other similar tectonic settings. Velocities representative of both the upper and lower continental crust are present, but there is no clear evidence for distinct upper and lower crustal layers within the hyper-thinned crust. Our velocity model supports exhumation of the lower crust under the footwalls of fault blocks to accommodate the extension. We used our model to generate a serpentinization map for the uppermost mantle at the DGM, at a depth of 100 ms (∼340 m) below the S-reflector, a low-angle detachment that marks the base of the crust at this margin. We find a good alignment between serpentinized areas and the overlying major block bounding faults on our map, suggesting that those faults played an important role in transporting water to the upper mantle. Further, we observe a weak correlation between fault heaves and serpentinization beneath the hanging-wall blocks, indicating that serpentinization was controlled by complex faulting during rifting. A good match between topographic highs of the S and local highly serpentinized areas of the mantle suggests that the morphology of the S was affected by the volume-increasing process of serpentinization and deformation of the overlying crust. Key Points Exhumation of the lower crust under the footwall of the normal faults to accommodate extension Overlying faults in the crust control water transport to the mantle Topography of the S-reflector is affected by the serpentinization process and deformations of the overlying crust
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...