GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kurman, Melissa; Gómez, C E; Georgian, Samuel E; Lunden, Jay J; Cordes, Erik E (2017): Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00111
    Publication Date: 2024-07-19
    Description: Ocean acidification, the decrease in seawater pH due to the absorption of atmospheric CO2, profoundly threatens the survival of a large number of marine species. Cold-water corals are considered to be among the most vulnerable organisms to ocean acidification because they are already exposed to relatively low pH and corresponding low calcium carbonate saturation states (Omega). Lophelia pertusa is a globally distributed cold-water scleractinian coral that provides critical three-dimensional habitat for many ecologically and economically significant species. In this study, four different genotypes of L. pertusa were exposed to three pH treatments (pH=7.60, 7.75, and 7.90) over a short (two-week) experimental period, and six genotypes were exposed to two pH treatments (pH=7.60, and 7.90) over a long (six-month) experimental period. Their physiological response was measured as net calcification rate and the activity of carbonic anhydrase, a key enzyme in the calcification pathway. In the short-term experiment, net calcification rates did not significantly change with pH, although they were highly variable in the low pH treatment, including some genotypes that maintained positive net calcification in undersaturated conditions. In the six-month experiment, average net calcification was significantly reduced at low pH, with corals exhibiting net dissolution of skeleton. However, one of the same genotypes that maintained positive net calcification (+0.04% day-1) under the low pH treatment in the short-term experiment also maintained positive net calcification longer than the other genotypes in the long-term experiment, although none of the corals maintained positive calcification for the entire 6 months. Average carbonic anhydrase activity was not affected by pH, although some genotypes exhibited small, insignificant, increases in activity after the sixth month. Our results suggest that while net calcification in L. pertusa is adversely affected by ocean acidification in the long term, it is possible that some genotypes may prove to be more resilient than others, particularly to short perturbations of the carbonate system. These results provide evidence that populations of L. pertusa in the Gulf of Mexico may contain the genetic variability necessary to support an adaptive response to future ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Buoyant mass; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carbonic anhydrase activity, per tissue weight; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); DATE/TIME; Deep-sea; Density; DEPTH, water; Dry mass; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Genotype; Identification; Incubation duration; Laboratory experiment; LATITUDE; LONGITUDE; Lophelia pertusa; Mass change; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Replicate; Salinity; Salinity, standard deviation; Single species; Site; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Time, incubation; Time point, descriptive; Treatment; Type; Uniform resource locator/link to reference
    Type: dataset
    Format: text/tab-separated-values, 16836 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lunden, Jay J; McNicholl, Conall G; Sears, Christopher R; Morrison, Cheryl L; Cordes, Erik E (2014): Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Frontiers in Marine Science, 1, https://doi.org/10.3389/fmars.2014.00078
    Publication Date: 2024-07-22
    Description: Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Deep-sea; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Individuals; Laboratory experiment; Lophelia pertusa; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Salinity; Single species; Species; Temperate; Temperature; Temperature, water; Treatment; Viosca_Knoll
    Type: dataset
    Format: text/tab-separated-values, 912 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...