GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 99 (1989), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In conjunction with airgun profiles on Lake Vänern, 48-channel seismic recordings were made along a 7 km long profile on the northern peninsula, Värmlandsnäs. This peninsula lies in the Mylonite Zone which runs through SW Sweden. Four airgun profiles were recorded, two on the eastern side of the Mylonite Zone and two on the western side, each profile being on the order of 20-30 km long. These profiles have been processed using the method of common data point (CDP) stacking which resulted in a total of approximately 50 km of sub-surface coverage. We have interpreted the data in the context of the regional geology and results from other geophysical studies in the area. Important results are the imaging of lower crustal reflectors and Moho at near-vertical incidence angles. The dips and depths of these reflectors are in fair agreement with other studies. The upper crust on the eastern side of the Mylonite Zone appears to be considerably more reflective. This may be due to the presence of mafic intrusions or to the reworking of the crust during the Sveconorwegian orogeny. A brief comparison with results from the GLIMPCE profiles over the Grenville province is also made.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9136
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract P- and S-wave velocity distributions obtained from DSS measurement have been used as a constraint in the inversion of surface-wave dispersion data. The combined interpretation was made as an attempt to enhance the resulting velocity models and to test the possibility to draw conclusions about the density distribution. The result indicates a potential value of a combined interpretation but it is obvious that very accurate velocity distributions are needed. The achieved density distribution is in good agreement with reported densities derived from gravimetric studies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 41 (1997), S. 15-28 
    ISSN: 1573-1626
    Keywords: lithospheric structure ; dispersion ; surface waves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Abstract Experimental dispersion curves of Rayleigh and Love waves along the Uppsala-Prague profile have been determined using records of several Italian earthquakes. To interpret the dispersion data, results of previous geophysical investigations in this region were first analyzed. Seven blocks of the crust and upper mantle were distinguished along the profile on the basis of deep seismic sounding and other seismic data. Layered models were proposed for these blocks. Computation of Rayleigh and Love waves shows a large differentiation of theoretical dispersion curves for the northern (Precambrian) and southern (Palaeozoic) part of the profile. A laterally inhomogeneous model for theUppsala - Prague profile, composed of the seven blocks, satisfies the surface wave data for the profile. Moreover, a mean layered model for the whole profile has also been proposed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 162 (1-2). pp. 51-85.
    Publication Date: 2019-05-06
    Description: Seismic refraction investigations along a 440-km long profije on the northern Baltic Shield have resolved the crustal structure in this area of Archaean to Early Proterozoic lithosphere formation. The profile, called the POLAR Profile, extends approximately along a SW-NE-oriented line from the Karelian Province in northern Finland across the Lapland Granulite Belt and the Kola Peninsula Province to the Varanger Peninsula in northeastern Norway. At six shotpoints, large explosions (200–1680 kg), and at three shotpoints, small explosions (80 kg) were detonated and recorded at an average station spacing of 2 km, providing high-quality record sections. A two-dimensional cross section of the crust was obtained by forward modelling using ray-tracing techniques. High-velocity bodies are found in the upper crust related to the Karasjok-Kittilä Greenstone Belt and the Lapland Granulite Belt. They extend to a depth of 6–13 km. In the Karelian Province in the southwest, a low-velocity zone was found between the depths of 8 and 14 km. The middle crust shows a slight increase in the average velocities from the southwest to the northeast, and a small velocity jump is found along a mid-crustal boundary between 18 and 21 km. The thickness of the middle crust varies between 16 and 18 km. The lower crust and the crust-mantle boundary (Moho) show considerable lateral variation. The top of the lower crust lies between 26 and 33 km, while its thickness decreases from 21 km in the southwest to 10–14 km beneath the Lapland Granulite Belt and the Inari Terrain, reaching 20 km again in the extreme northeast. The velocities also change laterally. The thin lower crust is characterized by rather low velocities (6.8–6.9 km/s), whereas in the southwest and northeast the velocities (6.9–7.3 km/s) resemble more typical shield structures. The Moho is found at 47 km in the Karelian Province, rises to 40 km beneath the Lapland Granulite Belt and descends to 46 km in the northeastern part of the Kola Peninsula Province. The upper mantle velocities at the Moho range from 8.1 km/s in the region of the thin crust, to 8.5 km/s and more beneath the Karelian Province. It is tempting to suggest that the anomalous lower crust underlying the Lapland Granulite Belt and the Inari Terrain may represent the remnants of an Early Proterozoic back-arc basin that was active prior to the 2.0 to 1.9 Ga plate convergence event, during which the Lapland Granulite Belt was thrust onto the Archaean basement of the Karelian Province. Another explanation is to assume that the velocity reduction in the anomalous lower crust was caused by a rather pronounced uplift of this region following the 1.9-Ga collision event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...