GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 24 (1995), S. 55-64 
    ISSN: 1432-1017
    Keywords: Influenza virus ; Membrane fusion ; Inactivation ; Fluorescence ; Dequenching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract We have studied the kinetics of low pH-induced fusion between influenza virus A/PR 8/34 and human erythrocyte membranes in suspension by using an assay based on fluorescence dequenching (FDQ) of the lipophilic dye octadecylrhodamine B chloride (R 18). As shown previously (Clague et al. 1991) the onset of FDQ is preceded by a characteristic lag time (t lag) following pH reduction. Whereas t lag represents only a subpopulation of fusing viruses with the shortest delay time we suggest here that a representative mean lag time µ1ag of virus-cell fusion can be deduced from the R 18-assay. Kinetics of FDQ reflects the cumulative distribution function of lag times τlag of single fusion events with the mean value µlag. We show that t lag obtained from the onset of FDQ does not always reflect the fusion behaviour of the whole population of fusing viruses. While both lag times, t lag and µlag exhibit a similar temperature dependence we found a significantly different dependence of both delay times on virus inactivation by low pH-pretreatment. We conclude that the mean lag time µlag appears to be a more appropriate parameter describing the kinetics of virus-cell fusion. The analysis of delay times offers a new approach to test the validity of different kinetic models of HA-mediated fusion and to gain valuable information about HA-mediated fusion. The analysis confirms that the inactivation process proceeds via steps of the formation of the fusion pore. Although the increase of lag times can be explained by a depletion of fusion competent HA's, our data suggest that intermediate structures of HA along the inactivation pathway can still transform into a fusion site.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4935
    Keywords: Membrane ; fusion ; virus ; protein ; transmembrane domain ; intraviral domain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Fusion of enveloped viruses with their target membrane is mediated by viral integral glycoproteins. A conformational change of their ectodomain triggers membrane fusion. Several studies suggest that an extended, triple-stranded rod-shaped α-helical coiled coil resembles a common structural and functional motif of the ectodomain of fusion proteins. From that, it is believed that essential features of the fusion process are conserved among the various enveloped viruses. However, this has not been established so far for the highly conserved transmembrane and intraviral sequences of fusion proteins. The article will focus on the role of both sequences in the fusion process. Recent studies from various enveloped viruses strongly imply that a transmembrane domain with a minimum length is required for later steps of membrane fusion, i.e., the formation and enlargement of the aqueous fusion pore. Although no specific sequence of the TM is necessary for pore formation, distinct properties and motifs of the domain may be obligatory to ascertain full fusion activity. However, with some exceptions, the intraviral domain seems to be not required for fusion activity of viral fusion proteins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4935
    Keywords: influenza virus ; hemagglutinin ; hydrophobicity ; fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The hydropathy profile of hemagglutinin (HA) subunits HA1 and HA2 of influenza virus X31 and A/PR 8/34 is analyzed at different pH. At neutral pH (7.4) pronounced hydrophobic sequences of HA correspond to the N-terminus and the transmembrane spanning sequence of HA2. At pH 5.0 where influenza virus is known to fuse with biological membranes several hydrophobic sequences in the ectodomain exist which are comparable in both the hydrophobicity and length of the N-terminus of HA2. It is suggested that these hydrophobic stretches are important for the fusion complex, in addition to the N-terminal site of HA2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology techniques 10 (1996), S. 221-226 
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Combining dielectrophoretic and hydrodynamic forces in micro electrode structures allows enrichment and stable trapping of viruses in aqueous solutions. Fluorescently labelled Influenza and Sendai viruses were collected from solutions of 2*105 – 2*108 viruses/μl within a few seconds. In the central part of the trap a virus aggregate of about 2–9 μm in diameter was formed. This corresponds to a local enrichment of viruses up to a factor of about 1400.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-05
    Description: Nature Geoscience 10, 19 (2017). doi:10.1038/ngeo2854 Authors: Ulf Riebesell, Lennart T. Bach, Richard G. J. Bellerby, J. Rafael Bermúdez Monsalve, Tim Boxhammer, Jan Czerny, Aud Larsen, Andrea Ludwig & Kai G. Schulz
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...